147 research outputs found

    Volatile sedation in sepsis: a promising therapeutic approach or a venture doomed to fail?

    Full text link
    Preclinical strategies targeting sepsis often had a single target and could not be translated into the clinical setting. Volatile sedation modulates multiple aspects of inflammation and improves sepsis-related survival in animal models. Whether a similar effect can be achieved in humans is unclear. Only a prospective clinical trial will be able to answer this question. The implementation of such a study in times when volatile anaesthetics are the focus of attention because of their greenhouse effect and their carbon dioxide emission will be a challenge, even though the alternative, i.v. sedation, is still insufficiently investigated in this respect

    Effects of sevoflurane and its metabolite hexafluoroisopropanol on hypoxia/reoxygenation-induced injury and mitochondrial bioenergetics in murine cardiomyocytes

    Full text link
    Background The volatile anaesthetic sevoflurane protects cardiac tissue from reoxygenation/reperfusion. Mitochondria play an essential role in conditioning. We aimed to investigate how sevoflurane and its primary metabolite hexafluoroisopropanol (HFIP) affect necrosis, apoptosis, and reactive oxygen species formation in cardiomyocytes upon hypoxia/reoxygenation injury. Moreover, we aimed to describe the similarities in the mode of action in a mitochondrial bioenergetics analysis. Methods Murine cardiomyocytes were exposed to hypoxia (0.2% O2 for 6 h), followed by reoxygenation (air with 5% CO2 for 2 h) in the presence or absence sevoflurane 2.2% or HFIP 4 mM. Lactate dehydrogenase (LDH) release (necrosis), caspase activation (apoptosis), reactive oxygen species, mitochondrial membrane potential, and mitochondrial function (Seahorse XF analyser) were measured. Results Hypoxia/reoxygenation increased cell death by 44% (+31 to +55%, P<0.001). Reoxygenation in the presence of sevoflurane 2.2% or HFIP 4 mM increased LDH release only by +18% (+6 to +30%) and 20% (+7 to +32%), respectively. Apoptosis and reactive oxygen species formation were attenuated by sevoflurane and HFIP. Mitochondrial bioenergetics analysis of the two substances was profoundly different. Sevoflurane did not influence oxygen consumption rate (OCR) or extracellular acidification rate (ECAR), whereas HFIP reduced OCR and increased ECAR, an effect similar to oligomycin, an adenosine triphosphate (ATP) synthase inhibitor. When blocking the metabolism of sevoflurane into HFIP, protective effects of sevoflurane – but not of HFIP – on LDH release and caspase were mitigated. Conclusion Together, our data suggest that sevoflurane metabolism into HFIP plays an essential role in cardiomyocyte postconditioning after hypoxia/reoxygenation injury

    Device for continuous extracorporeal blood purification using target-specific metal nanomagnets

    Get PDF
    Background. The present work illustrates how magnetic separation-based blood purification using ultra-strong iron nanomagnets can be implemented into an extracorporeal blood purification circuit. By this promising technique, today's blood purification may be extended to specifically filter high-molecular compounds without being limited by filter cut-offs or column surface saturation. Methods. Blood spiked with digoxin (small molecule drug) and interleukin-1β (inflammatory protein) was circulated ex vivo through a device composed of approved blood transfusion lines. Target-specific nanomagnets were continuously injected and subsequently recovered with the aid of a magnetic separator before recirculating the blood. Results. Magnetic blood purification was successfully carried out under flow conditions: already in single-pass experiments, removal efficiencies reached values of 75 and 40% for digoxin and interleukin-1β, respectively. Circulating 0.5 L of digoxin-intoxicated blood in a closed loop, digoxin concentration was decreased from initially toxic to therapeutic concentrations within 30 min and purification extents of 90% were achieved after 1.5 h. Conclusions. Magnetic separation can be successfully implemented into an extracorporeal blood purification device. Simultaneous and specific filtering of high-molecular compounds may offer promising new therapeutic tools for the future treatment of complex diseases, such as sepsis and autoimmune disorder

    Rat model of the associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure

    Full text link
    Recent clinical data support an aggressive surgical approach to both primary and metastatic liver tumors. For some indications, like colorectal liver metastases, the amount of liver tissue left behind after liver resection has become the main limiting factor of resectability of large or multiple liver tumors. A minimal amount of functional tissue is required to avoid the severe complication of post-hepatectomy liver failure, which has high morbidity and mortality. Inducing liver growth of the prospective remnant prior to resection has become more established in liver surgery, either in the form of portal vein embolization by interventional radiologists or in the form of portal vein ligation several weeks prior to resection. Recently, it was shown that liver regeneration is more extensive and rapid, when the parenchymal transection is added to portal vein ligation in a first stage and then, after only one week of waiting, resection performed in a second stage (Associating Liver Partition and Portal vein ligation for Staged hepatectomy = ALPPS). ALPPS has rapidly become popular across the world, but has been criticized for its high perioperative mortality. The mechanism of accelerated and extensive growth induced by this procedure has not been well understood. Animal models have been developed to explore both the physiological and molecular mechanisms of accelerated liver regeneration in ALPPS. This protocol presents a rat model that allows mechanistic exploration of accelerated regeneration

    Novel Prediction Score Including Pre- and Intraoperative Parameters Best Predicts Acute Kidney Injury after Liver Surgery

    Get PDF
    Background: A recently published score predicts the occurrence of acute kidney injury (AKI) after liver resection based on preoperative parameters (chronic renal failure, cardiovascular disease, diabetes, and alanine-aminotransferase levels). By inclusion of additional intraoperative parameters we aimed to develop a new prediction model. Methods: A series of 549 consecutive patients were enrolled. The preoperative score and intraoperative parameters (blood transfusion, hepaticojejunostomy, oliguria, cirrhosis, diuretics, colloids, and catecholamine) were included in a multivariate logistic regression model. We added the strongest predictors that improved prediction of AKI compared to the existing score. An internal validation by fivefold cross validation was performed, followed by a decision curve analysis to evaluate unnecessary special care unit admissions. Results: Blood transfusions, hepaticojejunostomy, and oliguria were the strongest intraoperative predictors of AKI after liver resection. The new score ranges from 0 to 64 points predicting postoperative AKI with a probability of 3.5-95%. Calibration was good in both models (15% predicted risk vs. 15% observed risk). The fivefold cross-validation indicated good accuracy of the new model (AUC 0.79 (95% CI 0.73-0.84)). Discrimination was substantially higher in the new model (AUCnew 0.81 (95% CI 0.76-0.86) versus AUCpreoperative 0.60 (95% CI 0.52-0.69), p<0.001). The new score could reduce up to 84 unnecessary special care unit admissions per 100 patients depending on the decision threshold. Conclusions: By combining three intraoperative parameters with the existing preoperative risk score, a new prediction model was developed that more accurately predicts postoperative AKI. It may reduce unnecessary admissions to the special care unit and support management of patients at higher ris

    Detection of circulating tumor cells in patients with esophagogastric or pancreatic adenocarcinoma using the CellSearch(®) system: An observational feasibility study

    Full text link
    Circulating tumor cells (CTCs) in the blood of cancer patients have been demonstrated to be of prognostic value regarding metastasis and survival. The CellSearch(®) system has been certified for the detection of CTCs and as a prognostic tool in patients with metastatic breast, colon and prostate cancer. Few studies have evaluated the detection of CTCs originating from esophagogastric or pancreatic cancer with the CellSearch(®) system. In the present small pilot study, a total of 16 patients with either esophagogastric (n=8) or pancreatic (n=8) adenocarcinomas at various disease stages were randomly screened and included. A total of 7.5 ml of blood was drawn from each patient and analyzed for CTCs using the CellSearch(®) device. CTCs could be detected in 1 out of 8 patients (12.5%) with esophagogastric and in 7 out of 8 patients (87.5%) with pancreatic cancer. The preliminary data obtained from this observational feasibility study suggested that the CellSearch(®) system may become a valuable tool for the detection of CTCs in patients with pancreatic adenocarcinoma, whereas the usefulness in patients with early-stage esophagogastric adenocarcinoma may be limited. This study clearly points towards a requirement for larger studies focusing on patients with pancreatic adenocarcinoma at various disease stages and assessing CTCs, whereas patients with esophagogastric adenocarcinomas should be part of further pilot studies

    Profibrotic potential of Prominin-1+ epithelial progenitor cells in pulmonary fibrosis

    Get PDF
    Background In idiopathic pulmonary fibrosis loss of alveolar epithelium induces inflammation of the pulmonary tissue followed by accumulation of pathogenic myofibroblasts leading eventually to respiratory failures. In animal models inflammatory and resident cells have been demonstrated to contribute to pulmonary fibrosis. Regenerative potential of pulmonary and extra-pulmonary stem and progenitor cells raised the hope for successful treatment option against pulmonary fibrosis. Herein, we addressed the contribution of lung microenvironment and prominin-1+ bone marrow-derived epithelial progenitor cells in the mouse model of bleomycin-induced experimental pulmonary fibrosis. Methods Prominin-1+ bone marrow-derived epithelial progenitors were expanded from adult mouse lungs and differentiated in vitro by cytokines and growth factors. Pulmonary fibrosis was induced in C57Bl/6 mice by intratracheal instillation of bleomycin. Prominin-1+ progenitors were administered intratracheally at different time points after bleomycin challenge. Green fluorescence protein-expressing cells were used for cell tracking. Cell phenotypes were characterized by immunohistochemistry, flow cytometry and quantitative reverse transcription-polymerase chain reaction. Results Prominin-1+ cells expanded from healthy lung represent common progenitors of alveolar type II epithelial cells, myofibroblasts, and macrophages. Administration of prominin-1+ cells 2 hours after bleomycin instillation protects from pulmonary fibrosis, and some of progenitors differentiate into alveolar type II epithelial cells. In contrast, prominin-1+ cells administered at day 7 or 14 lose their protective effects and differentiate into myofibroblasts and macrophages. Bleomycin challenge enhances accumulation of bone marrow-derived prominin-1+ cells within inflamed lung. In contrast to prominin-1+ cells from healthy lung, prominin-1+ precursors isolated from inflamed organ lack regenerative properties but acquire myofibroblast and macrophage phenotypes. Conclusion The microenvironment of inflamed lung impairs the regenerative capacity of bone marrow-derived prominin-1+ progenitors and promotes their differentiation into pathogenic phenotypes

    Impact of intraoperative fluid administration on outcome in patients undergoing robotic-assisted laparoscopic prostatectomy - a retrospective analysis

    Full text link
    BACKGROUND Robotic-assisted laparoscopic prostatectomy (RALP) gained much popularity during the last decade. Although the influence of intraoperative fluid management on patients' outcome has been largely discussed in general, its impact on perioperative complications and length of hospitalization in patients undergoing RALP has not been examined so far. We hypothesized that a more restrictive fluid management might lead to a shortened length of hospitalization and a decreased rate of complications in our patients. METHODS Retrospective analysis of data of 182 patients undergoing RALP at an University Hospital (first series of RALP performed at the center). RESULTS The amount of fluid administered was initially normalized for body mass index of the patient and the duration of the operation and additionally corrected for age and the interaction of these variables. The application of crystalloids (multiple linear regression model, estimate = -0.044, p = 0.734) had no effect on the length of hospitalization, whereas a negative effect was found for colloids (estimate = -8.317, p = 0.021). Additionally, a significant interaction term between age and the amount of colloid applied (estimate = 0.129, p = 0.028) was calculated. Evaluation of the influence of intraoperative fluid administration using multiple logistic regression models corrected for body mass index, duration of the surgery and additionally for age revealed a negative effect of crystalloids on the incidence of an anastomotic leak between bladder and urethra (estimate = -23.860, p = 0.017), with a significant interaction term between age and the amount of crystalloids (estimate = 0.396, p = 0.0134). Colloids had no significant effect on this particular complication (estimate = 1.887, p = 0.524). Intraoperative blood loss did not alter the incidence of an anastomotic leak (estimate = 0.001, p = 0.086), nor did it affect the length of hospitalization (estimate = 0.0001, p = 0.351). CONCLUSIONS In accordance to the findings of our study, we suggest that a standardized, more restrictive fluid management might be beneficial in patients undergoing RALP. In older patients this measure would be able to shorten the length of hospitalization and to decrease the incidence of anastomosis leakage as a major complication

    Which Anesthesia Regimen Is Best to Reduce Morbidity and Mortality in Lung Surgery? A Multicenter Randomized Controlled Trial.

    Get PDF
    BACKGROUND One-lung ventilation during thoracic surgery is associated with hypoxia-reoxygenation injury in the deflated and subsequently reventilated lung. Numerous studies have reported volatile anesthesia-induced attenuation of inflammatory responses in such scenarios. If the effect also extends to clinical outcome is yet undetermined. We hypothesized that volatile anesthesia is superior to intravenous anesthesia regarding postoperative complications. METHODS Five centers in Switzerland participated in the randomized controlled trial. Patients scheduled for lung surgery with one-lung ventilation were randomly assigned to one of two parallel arms to receive either propofol or desflurane as general anesthetic. Patients and surgeons were blinded to group allocation. Time to occurrence of the first major complication according to the Clavien-Dindo score was defined as primary (during hospitalization) or secondary (6-month follow-up) endpoint. Cox regression models were used with adjustment for prestratification variables and age. RESULTS Of 767 screened patients, 460 were randomized and analyzed (n = 230 for each arm). Demographics, disease and intraoperative characteristics were comparable in both groups. Incidence of major complications during hospitalization was 16.5% in the propofol and 13.0% in the desflurane groups (hazard ratio for desflurane vs. propofol, 0.75; 95% CI, 0.46 to 1.22; P = 0.24). Incidence of major complications within 6 months from surgery was 40.4% in the propofol and 39.6% in the desflurane groups (hazard ratio for desflurane vs. propofol, 0.95; 95% CI, 0.71 to 1.28; P = 0.71). CONCLUSIONS This is the first multicenter randomized controlled trial addressing the effect of volatile versus intravenous anesthetics on major complications after lung surgery. No difference between the two anesthesia regimens was evident
    corecore