32,043 research outputs found
Factors Contributing to the Catastrophe in Mexico City During the Earthquake of September 19, 1985
The extensive damage to high‐rise buildings in Mexico City during the September 19, 1985 earthquake is primarily due to the intensity of the ground shaking exceeding what was previously considered credible for the city by Mexican engineers. There were two major factors contributing to the catastrophe, resonance in the sediments of an ancient lake that once existed in the Valley of Mexico, and the long duration of shaking compared with other coastal earthquakes in the last 50 years. Both of these factors would be operative again if the Guerrero seismic gap ruptured in a single earthquake
Testing of reciprocating seals for application in a Stirling cycle engine
Six single stage reciprocating seal configurations to the requirements of the Stirling cycle engine were evaluated. The seals tested were: the Boeing Footseal, NASA Chevron polyimide seal, Bell seal, Quad seal, Tetraseal, and Dynabak seal. None of these seal configurations met the leakage goals of .002 cc/sec at helium gas pressure of 1.22 x 10 to the 7th power PA, rod speed of 7.19 m/sec peak, and seal environmental temperature of 408 K for 1500 hours. Most seals failed due to high temperatures. Catastrophic failures were observed for a minimum number of test runs characterized by extremely high leakage rates and large temperature rises. The Bell seal attained 63 hours of run time at significantly lowered test conditions
Dynamic Characteristics of Woodframe Buildings
The dynamic properties of wood shearwall buildings were evaluated, such as modal frequencies, damping and mode shapes of the structures. Through analysis of recorded earthquake response and by forced vibration testing, a database of periods and damping ratios of woodframe buildings was developed. Modal identification was performed on strong-motion records obtained from five buildings, and forced vibration tests were performed on a two-story house and a three-story apartment building, among others. A regression analysis is performed on the database to obtain a period formula specific for woodframe buildings. It should be noted that all test results, including the seismic data, are at small drift ratios (less than 0.1%), and the periods would be significantly longer for stronger shaking of these structures. Despite these low amplitudes, the equivalent viscous dampings for the fundamental modes were usually more than 10% of critical during earthquake shaking
Application of pushbroom altimetry from space using large space antennas
The capabilities of multibeam altimetry are discussed and an interferometric multibeam technique for doing precision altimetry is described. The antenna feed horn arrangement and the resulting footprint lube pattern are illustrated. Plans for a shuttle multibeam altimetry mission are also discussed
Horn antenna with v-shaped corrugated surface
Corrugated shape is easily machined for millimeter wave application and is better suited for folding antenna designs. Measured performance showed ""V'' corrugations and rectangular corrugations have nearly the same pattern beamwidth, gain, and impedance. Also, ""V'' corrugations have higher relative power loss
Phase II of the ASCE Benchmark Study on SHM
The task group on structural health monitoring of the Dynamic Committee of ASCE was formed in
1999 at the 12
th
Engineering Mechanics Conference. The task group has designed a number of analytical
studies on a benchmark structure and there are plans to follow these with an experimental program. The
first phase of the analytical studies was completed in 2001. The second phase, initiated in the summer of
2001, was formulated in the light of the experience gained on phase I and focuses on increasing realism in
the simulation of the discrepancies between the actual structure and the mathematical model used in the
analysis. This paper describes the rational that lead the SHM task group to the definition of phase II and
presents the details of the cases that are being considered
Distributed-Pair Programming can work well and is not just Distributed Pair-Programming
Background: Distributed Pair Programming can be performed via screensharing
or via a distributed IDE. The latter offers the freedom of concurrent editing
(which may be helpful or damaging) and has even more awareness deficits than
screen sharing. Objective: Characterize how competent distributed pair
programmers may handle this additional freedom and these additional awareness
deficits and characterize the impacts on the pair programming process. Method:
A revelatory case study, based on direct observation of a single, highly
competent distributed pair of industrial software developers during a 3-day
collaboration. We use recordings of these sessions and conceptualize the
phenomena seen. Results: 1. Skilled pairs may bridge the awareness deficits
without visible obstruction of the overall process. 2. Skilled pairs may use
the additional editing freedom in a useful limited fashion, resulting in
potentially better fluency of the process than local pair programming.
Conclusion: When applied skillfully in an appropriate context, distributed-pair
programming can (not will!) work at least as well as local pair programming
Polarization and Charge Transfer in the Hydration of Chloride Ions
A theoretical study of the structural and electronic properties of the
chloride ion and water molecules in the first hydration shell is presented. The
calculations are performed on an ensemble of configurations obtained from
molecular dynamics simulations of a single chloride ion in bulk water. The
simulations utilize the polarizable AMOEBA force field for trajectory
generation, and MP2-level calculations are performed to examine the electronic
structure properties of the ions and surrounding waters in the external field
of more distant waters. The ChelpG method is employed to explore the effective
charges and dipoles on the chloride ions and first-shell waters. The Quantum
Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge
transfer from the anion to surrounding water molecules.
From the QTAIM analysis, 0.2 elementary charges are transferred from the ion
to the first-shell water molecules. The default AMOEBA model overestimates the
average dipole moment magnitude of the ion compared with the estimated quantum
mechanical value. The average magnitude of the dipole moment of the water
molecules in the first shell treated at the MP2 level, with the more distant
waters handled with an AMOEBA effective charge model, is 2.67 D. This value is
close to the AMOEBA result for first-shell waters (2.72 D) and is slightly
reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment
of the water molecules in the first solvation shell is most strongly affected
by the local water-water interactions and hydrogen bonds with the second
solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy
Spontaneous exciton condensation in 1T-TiSe2: a BCS-like approach
Recently strong evidence has been found in favor of a BCS-like condensation
of excitons in 1\textit{T}-TiSe. Theoretical photoemission intensity maps
have been generated by the spectral function calculated within the excitonic
condensate phase model and set against experimental angle-resolved
photoemission spectroscopy data. Here, the calculations in the framework of
this model are presented in detail. They represent an extension of the original
excitonic insulator phase model of J\'erome \textit{et al.} [Phys. Rev. {\bf
158}, 462 (1967)] to three dimensional and anisotropic band dispersions. A
detailed analysis of its properties and further comparison with experiment are
also discussedComment: Submitted to PRB, 11 pages, 7 figure
- …