38,135 research outputs found

    Dosimetry for radiobiological studies of the human hematopoietic system

    Get PDF
    A system for estimating individual bone marrow doses in therapeutic radiation exposures of leukemia patients was studied. These measurements are used to make dose response correlations and to study the effect of dose protraction on peripheral blood cell levels. Three irradiators designed to produce a uniform field of high energy gamma radiation for total body exposures of large animals and man are also used for radiobiological studies

    Lagrangian acceleration statistics in turbulent flows

    Full text link
    We show that the probability densities af accelerations of Lagrangian test particles in turbulent flows as measured by Bodenschatz et al. [Nature 409, 1017 (2001)] are in excellent agreement with the predictions of a stochastic model introduced in [C. Beck, PRL 87, 180601 (2001)] if the fluctuating friction parameter is assumed to be log-normally distributed. In a generalized statistical mechanics setting, this corresponds to a superstatistics of log-normal type. We analytically evaluate all hyperflatnes factors for this model and obtain a flatness prediction in good agreement with the experimental data. There is also good agreement with DNS data of Gotoh et al. We relate the model to a generalized Sawford model with fluctuating parameters, and discuss a possible universality of the small-scale statistics.Comment: 10 pages, 2 figure

    A new method for the determination of thin film porosity

    Get PDF
    Internal reflection spectroscopy may be used to determine presence of water in thin film pores. Presence of water in such pores is function of relative humidity and pore size. Thus, one can determine pore size by controlling humidity. Fluids with surface tension different from that of water can be used to detect pores

    Application of pushbroom altimetry from space using large space antennas

    Get PDF
    The capabilities of multibeam altimetry are discussed and an interferometric multibeam technique for doing precision altimetry is described. The antenna feed horn arrangement and the resulting footprint lube pattern are illustrated. Plans for a shuttle multibeam altimetry mission are also discussed

    Magneto-acoustic waves in sunspots from observations and numerical simulations

    Full text link
    We study the propagation of waves from the photosphere to the chromosphere of sunspots. From time series of cospatial Ca II H (including its line blends) intensity spectra and polarimetric spectra of Si I 1082.7 nm and He I 1083.0 nm we retrieve the line-of-sight velocity at several heights. The analysis of the phase difference and amplification spectra shows standing waves for frequencies below 4 mHz and propagating waves for higher frequencies, and allows us to infer the temperature and height where the lines are formed. Using these observational data, we have constructed a model of sunspot, and we have introduced the velocity measured with the photospheric Si I 1082.7 nm line as a driver. The numerically propagated wave pattern fits reasonably well with the observed using the lines formed at higher layers, and the simulations reproduce many of the observed features. The observed waves are slow MHD waves propagating longitudinally along field lines.Comment: proceedings of GONG 2010/SOHO 24 meeting, June 27 - July 2, 2010, Aix-en-Provence, Franc

    The eight micron band of silicon monoxide in the expanding cloud around VY Canis Majoris

    Get PDF
    Observations of vibration-rotation transitions of silicon monoxide in VY CMa show that the lines originate in accelerating, expanding, and cool (600 K) layers of a circumstellar cloud at a distance of roughly 0.15 minutes from the central star. The central stellar velocity, as estimated from observed SiO P Cygni line profiles, is somewhat redshifted from the midpoint of the maser emission features. Most of the silicon is probably in the form of dust grains. The isotopic ratios of silicon are nearly terrestrial

    What measurable zero point fluctuations can(not) tell us about dark energy

    Get PDF
    We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ~10 eV, well above the dark energy scale of ~0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally.Comment: 4 page

    Infrared spectroscopy of star formation in galaxies

    Get PDF
    The Brackett alpha and beta lines with 7.2 seconds angular and 350 km/s velocity resolution were observed in 11 infrared-bright galaxies. From these measurements extinctions, Lyman continuum fluxes, and luminosities due to OB stars were derived. The galaxies observed to date are NGC3690, M38, NGC 5195, Arp 220, NGC 520, NGC660, NGC1614, NGC 3079, NGC 6946, NGC 7714, and Maffei 2, all of which were suggested at some time to be starburst ogjects. The contributions of OB stars to the luminosities of these galaxies can be quantified from the measurements and range from insignificant to sufficient to account for the total energy output. The OB stellar luminosities observed are as high as 10 to the 12th solar luminosities in the galaxy NGC 1614. It is noteworthy that star formation can play very different roles in the infrared energy output of galaxies of similar luminosity, as for example Arp 220 and NGC 1614. In addition to probing the star formation process in these galaxies, the Brackett line measurements, when compared to radio and infrared continuum results, have revealed some unexpected and at present imperfectly understood phenomena: in some very luminous sources the radio continuum appears to be suppressed relative to the infrared recombination lines; in many galaxies there is a substantial excess of 10 micron flux over that predicted from simple models of Lyman alpha heating of dust if young stars are the only significant energy source

    Measuring non-extensitivity parameters in a turbulent Couette-Taylor flow

    Full text link
    We investigate probability density functions of velocity differences at different distances r measured in a Couette-Taylor flow for a range of Reynolds numbers Re. There is good agreement with the predictions of a theoretical model based on non-extensive statistical mechanics (where the entropies are non-additive for independent subsystems). We extract the scale-dependent non-extensitivity parameter q(r, Re) from the laboratory data.Comment: 8 pages, 5 figure
    corecore