894 research outputs found
Accelerator Mass Spectrometry at Arizona: Geochronology of the Climatic Record and Connections with the Ocean
There are many diverse uses of accelerator mass spectrometry (AMS). 14C studies at our laboratory include much research related to paleoclimate, with 14C as a tracer of past changes in environmental conditions as observed in corals, marine sediments, and many terrestrial records. Terrestrial records can also show the influence of oceanic oscillations, whether they are short term, such as ENSO (El Niño/Southern Oscillation), or on the millennial time scale. In tracer applications, we have developed the use of 129I as well as 14C as tracers for nuclear pollution studies around radioactive waste dump sites, in collaboration with IAEA. We discuss some applications carried out in Tucson, AZ, for several of these fields and hope to give some idea of the breadth of these studies
Recommended from our members
Defense Waste Processing Facility Radioactive Operations - Year Two
The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first high-level radioactive waste vitrification facility. This waste (130 million liters) which has been stored in carbon steel underground tanks and is now being pretreated, melted into a highly durable borosilicate glass and poured into stainless steel canisters for eventual disposal in a geologic repository. Following a ten-year construction period and nearly three-year nonradioactive test program, the DWPF began radioactive operations in March 1996. The first nine months of radioactive operations have been reported previously. As with any complex technical facility, difficulties were encountered during the transition to radioactive operations. Results of the second year of radioactive operations are presented in this paper. The discussion includes: feed preparation and glass melting, resolution of the melter pouring issues, improvements in processing attainment and throughput, and planned improvements in laboratory attainment and throughput
The inverse moment problem for convex polytopes
The goal of this paper is to present a general and novel approach for the
reconstruction of any convex d-dimensional polytope P, from knowledge of its
moments. In particular, we show that the vertices of an N-vertex polytope in
R^d can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to
an unknown polynomial measure od degree D) in d+1 distinct generic directions.
Our approach is based on the collection of moment formulas due to Brion,
Lawrence, Khovanskii-Pukhikov, and Barvinok that arise in the discrete geometry
of polytopes, and what variously known as Prony's method, or Vandermonde
factorization of finite rank Hankel matrices.Comment: LaTeX2e, 24 pages including 1 appendi
Two-parameter Quantum Affine Algebra , Drinfel'd Realization and Quantum Affine Lyndon Basis
We further define two-parameter quantum affine algebra
after the work on the finite cases
(see [BW1], [BGH1], [HS] & [BH]), which turns out to be a Drinfel'd double. Of
importance for the quantum {\it affine} cases is that we can work out the
compatible two-parameter version of the Drinfel'd realization as a quantum
affinization of and establish the Drinfel'd isomorphism
Theorem in the two-parameter setting, via developing a new combinatorial
approach (quantum calculation) to the quantum {\it affine} Lyndon basis we
present (with an explicit valid algorithm based on the use of Drinfel'd
generators).Comment: 31 page
Patterns in rational base number systems
Number systems with a rational number as base have gained interest
in recent years. In particular, relations to Mahler's 3/2-problem as well as
the Josephus problem have been established. In the present paper we show that
the patterns of digits in the representations of positive integers in such a
number system are uniformly distributed. We study the sum-of-digits function of
number systems with rational base and use representations w.r.t. this
base to construct normal numbers in base in the spirit of Champernowne. The
main challenge in our proofs comes from the fact that the language of the
representations of integers in these number systems is not context-free. The
intricacy of this language makes it impossible to prove our results along
classical lines. In particular, we use self-affine tiles that are defined in
certain subrings of the ad\'ele ring and Fourier
analysis in . With help of these tools we are able to
reformulate our results as estimation problems for character sums
Distinct Microbial Signatures between Periodontal Profile Classes
Precise classification of periodontal disease has been the objective of concerted efforts and has led to the introduction of new consensus-based and data-driven classifications. The purpose of this study was to characterize the microbiological signatures of a latent class analysis (LCA)–derived periodontal stratification system, the Periodontal Profile Class (PPC) taxonomy. We used demographic, microbial (subgingival biofilm composition), and immunological data (serum IgG antibody levels, obtained with checkerboard immunoblotting technique) for 1,450 adult participants of the Dental Atherosclerosis Risk in Communities (ARIC) study, with already generated PPC classifications. Analyses relied on t tests and generalized linear models with Bonferroni correction. Men and African Americans had higher systemic antibody levels against most microorganisms compared to women and Caucasians (P < 0.05). Healthy individuals (PPC-I) had low levels of biofilm bacteria and serum IgG levels against most periodontal pathogens (P < 0.05). Subjects with mild to moderate disease (PPC-II to PPC-III) showed mild/moderate colonization of multiple biofilm pathogens. Individuals with severe disease (PPC-IV) had moderate/high levels of biofilm pathogens and antibody levels for orange/red complexes. High gingival index individuals (PPC-V) showed moderate/high levels of biofilm Campylobacter rectus and Aggregatibacter actinomycetemcomitans. Biofilm composition in individuals with reduced periodontium (PPC-VI) was similar to health but showed moderate to high antibody responses. Those with severe tooth loss (PPC-VII) had significantly high levels of multiple biofilm pathogens, while the systemic antibody response to these microorganisms was comparable to health. The results support a biologic basis for elevated risk for periodontal disease in men and African Americans. Periodontally healthy individuals showed a low biofilm pathogen and low systemic antibody burden. In the presence of PPC disease, a microbial-host imbalance characterized by higher microbial biofilm colonization and/or systemic IgG responses was identified. These results support the notion that subgroups identified by the PPC system present distinct microbial profiles and may be useful in designing future precise biological treatment interventions
Processing of ultrafine-size particulate metal matrix composites by advanced shear technology
Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR
Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology
Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting
(MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated.
The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR
- …