19 research outputs found

    Water-Proof Joints for Roofing-Boards.

    No full text
    Patent for the improvement of water-proof joints for roofing-boards, including illustrations

    Abelson tyrosine kinase links PDGFbeta receptor activation to cytoskeletal regulation of NMDA receptors in CA1 hippocampal neurons

    No full text
    Abstract Background We have previously demonstrated that PDGF receptor activation indirectly inhibits N-methyl-D-aspartate (NMDA) currents by modifying the cytoskeleton. PDGF receptor ligand is also neuroprotective in hippocampal slices and cultured neurons. PDGF receptors are tyrosine kinases that control a variety of signal transduction pathways including those mediated by PLCγ. In fibroblasts Src and another non-receptor tyrosine kinase, Abelson kinase (Abl), control PDGF receptor regulation of cytoskeletal dynamics. The mechanism whereby PDGF receptor regulates cytoskeletal dynamics in central neurons remains poorly understood. Results Intracellular applications of active Abl, but not heat-inactivated Abl, decreased NMDA-evoked currents in isolated hippocampal neurons. This mimics the effects of PDGF receptor activation in these neurons. The Abl kinase inhibitor, STI571, blocked the inhibition of NMDA currents by Abl. We demonstrate that PDGF receptors can activate Abl kinase in hippocampal neurons via mechanisms similar to those observed previously in fibroblasts. Furthermore, PDGFβ receptor activation alters the subcellular localization of Abl. Abl kinase is linked to actin cytoskeletal dynamics in many systems. We show that the inhibition of NMDA receptor currents by Abl kinase is blocked by the inclusion of the Rho kinase inhibitor, Y-27632, and that activation of Abl correlates with an increase in ROCK tyrosine phosphorylation. Conclusion This study demonstrates that PDGFβ receptors act via an interaction with Abl kinase and Rho kinase to regulated cytoskeletal regulation of NMDA receptor channels in CA1 pyramidal neurons.</p

    Abelson tyrosine kinase links PDGFbeta receptor activation to cytoskeletal regulation of NMDA receptors in CA1 hippocampal neurons

    No full text
    Abstract Background We have previously demonstrated that PDGF receptor activation indirectly inhibits N-methyl-D-aspartate (NMDA) currents by modifying the cytoskeleton. PDGF receptor ligand is also neuroprotective in hippocampal slices and cultured neurons. PDGF receptors are tyrosine kinases that control a variety of signal transduction pathways including those mediated by PLCγ. In fibroblasts Src and another non-receptor tyrosine kinase, Abelson kinase (Abl), control PDGF receptor regulation of cytoskeletal dynamics. The mechanism whereby PDGF receptor regulates cytoskeletal dynamics in central neurons remains poorly understood. Results Intracellular applications of active Abl, but not heat-inactivated Abl, decreased NMDA-evoked currents in isolated hippocampal neurons. This mimics the effects of PDGF receptor activation in these neurons. The Abl kinase inhibitor, STI571, blocked the inhibition of NMDA currents by Abl. We demonstrate that PDGF receptors can activate Abl kinase in hippocampal neurons via mechanisms similar to those observed previously in fibroblasts. Furthermore, PDGFβ receptor activation alters the subcellular localization of Abl. Abl kinase is linked to actin cytoskeletal dynamics in many systems. We show that the inhibition of NMDA receptor currents by Abl kinase is blocked by the inclusion of the Rho kinase inhibitor, Y-27632, and that activation of Abl correlates with an increase in ROCK tyrosine phosphorylation. Conclusion This study demonstrates that PDGFβ receptors act via an interaction with Abl kinase and Rho kinase to regulated cytoskeletal regulation of NMDA receptor channels in CA1 pyramidal neurons

    Abelson Tyrosine Kinase Links PDGFbeta Receptor Activation to Cytoskeletal Regulation of NMDA Receptors in CA1 Hippocampal Neurons

    Get PDF
    Background: We have previously demonstrated that PDGF receptor activation indirectly inhibits N-methyl-D-aspartate (NMDA) currents by modifying the cytoskeleton. PDGF receptor ligand is also neuroprotective in hippocampal slices and cultured neurons. PDGF receptors are tyrosine kinases that control a variety of signal transduction pathways including those mediated by PLCγ. In fibroblasts Src and another non-receptor tyrosine kinase, Abelson kinase (Abl), control PDGF receptor regulation of cytoskeletal dynamics. The mechanism whereby PDGF receptor regulates cytoskeletal dynamics in central neurons remains poorly understood. Results: Intracellular applications of active Abl, but not heat-inactivated Abl, decreased NMDAevoked currents in isolated hippocampal neurons. This mimics the effects of PDGF receptor activation in these neurons. The Abl kinase inhibitor, STI571, blocked the inhibition of NMDA currents by Abl. We demonstrate that PDGF receptors can activate Abl kinase in hippocampal neurons via mechanisms similar to those observed previously in fibroblasts. Furthermore, PDGFβ receptor activation alters the subcellular localization of Abl. Abl kinase is linked to actin cytoskeletal dynamics in many systems. We show that the inhibition of NMDA receptor currents by Abl kinase is blocked by the inclusion of the Rho kinase inhibitor, Y-27632, and that activation of Abl correlates with an increase in ROCK tyrosine phosphorylation. Conclusion: This study demonstrates that PDGFβ receptors act via an interaction with Abl kinase and Rho kinase to regulated cytoskeletal regulation of NMDA receptor channels in CA1 pyramidal neurons

    Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation.

    Get PDF
    High concentrations of reactive oxygen species (ROS) induce cellular damage, however at lower concentrations ROS act as intracellular second messengers. In this study, we demonstrate that serotonin (5-HT) transactivates the platelet-derived growth factor (PDGF) type β receptor as well as the TrkB receptor in neuronal cultures and SH-SY5Y cells, and that the transactivation of both receptors is ROS-dependent. Exogenous application of H₂O₂ induced the phosphorylation of these receptors in a dose-dependent fashion, similar to that observed with 5-HT. However the same concentrations of H₂O₂ failed to increase ERK1/2 phosphorylation. Yet, the NADPH oxidase inhibitors diphenyleneiodonium chloride and apocynin blocked both 5-HT-induced PDGFβ receptor phosphorylation and ERK1/2 phosphorylation. The increases in PDGFβ receptor and ERK1/2 phosphorylation were also dependent on protein kinase C activity, likely acting upstream of NADPH oxidase. Additionally, although the ROS scavenger N-acetyl-l-cysteine abrogated 5-HT-induced PDGFβ and TrkB receptor transactivation, it was unable to prevent 5-HT-induced ERK1/2 phosphorylation. Thus, the divergence point for 5-HT-induced receptor tyrosine kinase (RTK) transactivation and ERK1/2 phosphorylation occurs at the level of NADPH oxidase in this system. The ability of 5-HT to induce the production of ROS resulting in transactivation of both PDGFβ and TrkB receptors may suggest that instead of a single GPCR to single RTK pathway, a less selective, more global RTK response to GPCR activation is occurring

    Mechanism of PDGFβ and TrkB receptor transactivation.

    No full text
    <p>Gα<sub>i</sub>-coupled GPCRs such as 5-HT<sub>1A</sub> initiate transactivation signaling, which gets relayed through Gα or Gβγ subunits. PLC activation results in intracellular calcium release and activation of PKC. The NADPH oxidase subunits subsequently assemble and produce ROS. Active NADPH oxidase is required for both 5-HT-induced RTK and ERK1/2 phosphorylation but only endogenous ROS (or exogenous H<sub>2</sub>O<sub>2</sub>) is involved in RTK transactivation.</p

    5-HT-induced PDGFβ receptor transactivation requires PKC and NADPH oxidase.

    No full text
    <p>(A) SH-SY5Y cell cultures were pretreated with vehicle or 0.1, 1 or 10 µM of the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. Following drug treatments, cell lysates were evaluated by immunoblot analysis as described in Materials and Methods. Data were normalized to total PDGFRβ protein expression and are expressed as the fold change (average ± S.E.M.) in phospho-1021 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-PDGFRβ 1021 (pY1021) and PDGFRβ at 180 kDa are shown. (B) Cell cultures were pretreated with vehicle or 1, 10 or 100 µM of the NADPH oxidase inhibitor apocynin for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min, and results were analyzed for phospho-Y1021 as described in “A”. (C) Cultures were pretreated with vehicle or 0.1 µM of the PKC inhibitor Go 6983 for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min, and results were analyzed for phospho-Y1021 as described in “A”. (Data are representative of 3-5 independent experiments. * = p < 0.05 compared to vehicle-treated cells; # = p < 0.05 compared to 5-HT-treated cells, one-way ANOVA, Tukey post-test).</p

    5-HT induced ERK1/2 phosphorylation diverges from the transactivation pathway at or after NADPH oxidase.

    No full text
    <p>(A) SH-SY5Y cells were treated with 0.01 to 100 µM H<sub>2</sub>O<sub>2</sub> for 5 min. Following drug treatments, cell lysates were evaluated by Western blot analysis as described in Materials and Methods. Data were normalized to total ERK1/2 protein expression and are expressed as the fold change (average ± S.E.M.) in phospho-ERK immunoreactivity compared to vehicle-treated cells. (B) SH-SY5Y cell cultures were pretreated with vehicle or 10, 100 or 1000 µM of the ROS scavenger <i>N</i>-acetyl-l-cysteine (NAC) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min and lysates were evaluated as in “A”. Cell cultures were also pretreated with vehicle or the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) (C) or apocynin (D) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min, and results were analyzed for phospho-ERK1/2 as described in “A”. (E) Cultures were pretreated with vehicle or 0.1 µM of the PKC inhibitor Go 6983 for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min, and results were analyzed for phospho-ERK1/2 as described above. Representative blots of phospho-ERK1/2 and total ERK1/2 at 42 and 44 kDa are shown. (Data are representative of 4-8 independent experiments. * = p < 0.05 compared to vehicle-treated cells; # = p < 0.05 compared to 5-HT-treated cells, one-way ANOVA, Tukey post-test).</p

    5-HT can transactivate TrkB receptors via ROS.

    No full text
    <p>(A) SH-SY5Y cells were treated with vehicle (VEH) or 0.01 to 10 µM H<sub>2</sub>O<sub>2</sub> for 5 min. Following drug treatments, cell lysates were evaluated by Western blot analysis as described in Materials and Methods. Data were normalized to total TrkB protein expression and are expressed as the fold change (average ± S.E.M.) in TrkB phospho-816 immunoreactivity compared to vehicle-treated cells. Representative blots for phospho-TrkB Y816 (pY816) and TrkB at 145 kDa are shown. (B) Cell cultures were incubated with 0.1 µM 5-HT for 0, 1, 2, 5, 10, or 15 min, and fold change in TrkB Y816 phosphorylation was measured with respect to vehicle. (C) Cultures were pretreated with vehicle or 1000 µM of the ROS scavenger <i>N</i>-acetyl-l-cysteine (NAC) for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. Normalized data was analyzed for phospho-TrkB Y816. (D) Cells were incubated overnight with 0.01 or 0.1 µg/mL pertussis toxin (Ptx) followed by 5 min treatment with 0.1 µM 5-HT. (E) Cell cultures were pretreated with vehicle or 1 or 10 µM of the PDGF receptor kinase inhibitor AG 1296 for 45 min followed by treatment with vehicle or 100 nM 5-HT for 5 min. Western blots were evaluated for changes in phospho-TrkB Y816. (Data are representative of 5-6 independent experiments. * = p < 0.05 compared to vehicle-treated cells; # = p < 0.05 compared to 5-HT-treated cells, one-way ANOVA, Tukey post-test).</p
    corecore