16 research outputs found

    Potential Climatic Impact of Organic Haze on Early Earth

    Get PDF
    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH = 80–87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ = 0.22 ± 0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds

    Observational Insights into Aerosol Formation from Isoprene

    Get PDF
    Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO_2) and hydroperoxyl (HO_2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F_(MAE formation)). The strong temperature dependence of F_(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS;~1 ng m^(–3)) and MAE-derived organosulfates (MAE-OS;~1 ng m^(–3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m^(–3)) relative to MAE-OS (<0.0005 ng m^(–3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10−100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NO_x, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source

    Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley of California during CalNex-2010

    Get PDF
    National ambient air quality standards (NAAQS) have been set for PM_2.5 due to its association with adverse health effects. PM_2.5 design values in the South Coast Air Basin (SoCAB) and San Joaquin Valley of California exceed NAAQS levels, and NH^(+)_(4) and NO^(-)_(3) make up the largest fraction of total PM2.5 mass on polluted days. Here we evaluate fine-scale simulations of PM_(2.5) NH^(+)_(4) and NO^(-)_(3) with the Community Multiscale Air Quality model using measurements from routine networks and the California Research at the Nexus of Air Quality and Climate Change 2010 campaign. The model correctly simulates broad spatial patterns of NH^(+)_(4) and NO^(-)_(3) including the elevated concentrations in eastern SoCAB. However, areas for model improvement have been identified. NH_3 emissions from livestock and dairy facilities appear to be too low, while those related to waste disposal in western SoCAB may be too high. Analyses using measurements from flights over SoCAB suggest that problems with NH3 predictions can influence NO^(-)_(3) predictions there. Offline ISORROPIA II calculations suggest that overpredictions of NH_x in Pasadena cause excessive partitioning of total nitrate to the particle phase overnight, while underpredictions of Na^+ cause too much partitioning to the gas phase during the day. Also, the model seems to underestimate mixing during the evening boundary layer transition leading to excessive nitrate formation on some nights. Overall, the analyses demonstrate fine-scale variations in model performance within and across the air basins. Improvements in inventories and spatial allocations of NH_3 emissions and in parameterizations of sea spray emissions, evening mixing processes, and heterogeneous ClNO_2 chemistry could improve model performance

    Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs)

    Get PDF
    The C5-hydroperoxyenals (C5-HPALDs) are a newly-recognized class of multi-functional hydrocarbons produced during the hydroxyl radical (OH)-initiated oxidation of isoprene. Recent theoretical calculations suggest that fast photolysis of these compounds may be an important OH source in high-isoprene, low-NO regions. We report experimental constraints for key parameters of photolysis, OH reaction and ozone reaction of these compounds as derived from a closely-related, custom-synthesized C_6-HPALD. The photolysis quantum yield is 1.0 ± 0.4 over the range 300–400 nm, assuming an absorption cross section equal to the average of those measured for several analogous enals. The yield of OH from photolysis was determined as 1.0 ± 0.8. The OH reaction rate constant is (5.1 ± 1.8) × 10^(−11) cm^3 molecule^(−1) s^(−1) at 296 K. The ozone reaction rate constant is (1.2 ± 0.2) × 10^(−18) cm^3 molecule^(−1) s^(−1) at 296 K. These results are consistent with previous first-principles estimates, though the nature and fate of secondary oxidation products remains uncertain. Incorporation of C5-HPALD chemistry with the above parameters in a 0-D box model, along with experimentally-constrained rates for C_5-HPALD production from isomerization of first-generation isoprene hydroxyperoxy radicals, is found to enhance modeled OH concentrations by 5–16% relative to the traditional isoprene oxidation mechanism for the chemical regimes of recent observational studies in rural and remote regions. This enhancement in OH will increase if C_5-HPALD photo-oxidation products also photolyze to yield additional OH or if the C_5-HPALD production rate is faster than has been observed

    Ice nucleation in sulfuric acid/organic aerosols: Implications for cirrus cloud formation

    No full text
    Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C3 and C9) on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s) at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed

    Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    No full text
    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultravioletâ visible (UVâ vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C2â C8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols

    Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    No full text
    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96wt% sulfuric acid in water. Aerosols up to 88.4wt% organic/11.1wt% H2SO4/0.5wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96wt% in water

    Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide

    No full text
    This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in Houston, Texas and Denver, Colorado, under the umbrella of the NASA-led DISCOVER-AQ Earth Venture Mission. Measurements were focused on ozone (O3) and nitrogen dioxide (NO2). The performance evaluation showed that the CairClip O3/NO2 sensor provided a consistent measurement response to that of reference monitors (r2 = 0.79 in Houston; r2 = 0.72 in Denver) whereas the CairClip NO2 sensor measurements showed no agreement to reference measurements. The CairClip O3/NO2 sensor data from the citizen science sites compared favorably to measurements at nearby reference monitoring sites. This study provides important information on data quality from low-cost sensor technologies and is one of few studies that reports sensor data collected directly by citizen scientists

    Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    No full text
    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gasphase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1 H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC–MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75–96 wt % sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30–96 wt % sulfuric acid in water. Aerosols up to 88.4 wt % organic/11.1 wt % H 2SO 4/0.5 wt % water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions
    corecore