943 research outputs found

    Maximum likelihood method for fitting a sum of exponentials to experimental data

    Get PDF
    Maximum likelihood method for fitting sum of expotentials to experimental dat

    Scalability of Shor's algorithm with a limited set of rotation gates

    Full text link
    Typical circuit implementations of Shor's algorithm involve controlled rotation gates of magnitude π/22L\pi/2^{2L} where LL is the binary length of the integer N to be factored. Such gates cannot be implemented exactly using existing fault-tolerant techniques. Approximating a given controlled π/2d\pi/2^{d} rotation gate to within δ=O(1/2d)\delta=O(1/2^{d}) currently requires both a number of qubits and number of fault-tolerant gates that grows polynomially with dd. In this paper we show that this additional growth in space and time complexity would severely limit the applicability of Shor's algorithm to large integers. Consequently, we study in detail the effect of using only controlled rotation gates with dd less than or equal to some dmaxd_{\rm max}. It is found that integers up to length Lmax=O(4dmax)L_{\rm max} = O(4^{d_{\rm max}}) can be factored without significant performance penalty implying that the cumbersome techniques of fault-tolerant computation only need to be used to create controlled rotation gates of magnitude π/64\pi/64 if integers thousands of bits long are desired factored. Explicit fault-tolerant constructions of such gates are also discussed.Comment: Substantially revised version, twice as long as original. Two tables converted into one 8-part figure, new section added on the construction of arbitrary single-qubit rotations using only the fault-tolerant gate set. Substantial additional discussion and explanatory figures added throughout. (8 pages, 6 figures

    Fast Quantum Modular Exponentiation

    Full text link
    We present a detailed analysis of the impact on modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space tradeoffs. We find that, to exponentiate an n-bit number, for storage space 100n (twenty times the minimum 5n), we can execute modular exponentiation two hundred to seven hundred times faster than optimized versions of the basic algorithms, depending on architecture, for n=128. Addition on a neighbor-only architecture is limited to O(n) time when non-neighbor architectures can reach O(log n), demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices.Comment: to appear in PRA 71(5); RevTeX, 12 pages, 12 figures; v2 revision is substantial, with new algorithmic variants, much shorter and clearer text, and revised equation formattin

    The impact of global economic crisis and austerity on quality of working life and work-life balance: A capabilities perspective

    Get PDF
    This paper draws on the capabilities approach as a framework for examining the impact of the global economic crisis and austerity on quality of working life and work-life balance. Our paper focuses on Greece, an extreme case of a country in economic crisis, characterised by a weak institutional basis. We build on the work of Barbara Hobson and colleagues who first applied the capabilities approach to explore work-life balance capabilities. Our study contributes to the development of theory by emphasising the sense of entitlement concept within the capabilities approach and by proposing a modified conceptual framework that encapsulates the link between capabilities, agency, and the sense of entitlement, where the latter acts as a cognitive ‘filter’ that enhances or weakens an individual’s perception of her/his agency to enact on her/his capabilities. Drawing on the accounts of twenty Greek professional and managerial workers, we illustrate how the crisis and austerity measures have eroded working conditions and thus the sense of entitlement, leading to the weakening of our participants’ agency and capabilities to achieve quality of working life and work-life balance. This is the peer reviewed version of the article to be published in final form by Wiley at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1740-4762. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

    Resource Requirements for Fault-Tolerant Quantum Simulation: The Transverse Ising Model Ground State

    Full text link
    We estimate the resource requirements, the total number of physical qubits and computational time, required to compute the ground state energy of a 1-D quantum Transverse Ising Model (TIM) of N spin-1/2 particles, as a function of the system size and the numerical precision. This estimate is based on analyzing the impact of fault-tolerant quantum error correction in the context of the Quantum Logic Array (QLA) architecture. Our results show that due to the exponential scaling of the computational time with the desired precision of the energy, significant amount of error correciton is required to implement the TIM problem. Comparison of our results to the resource requirements for a fault-tolerant implementation of Shor's quantum factoring algorithm reveals that the required logical qubit reliability is similar for both the TIM problem and the factoring problem.Comment: 19 pages, 8 figure

    Implementing Shor's algorithm on Josephson Charge Qubits

    Full text link
    We investigate the physical implementation of Shor's factorization algorithm on a Josephson charge qubit register. While we pursue a universal method to factor a composite integer of any size, the scheme is demonstrated for the number 21. We consider both the physical and algorithmic requirements for an optimal implementation when only a small number of qubits is available. These aspects of quantum computation are usually the topics of separate research communities; we present a unifying discussion of both of these fundamental features bridging Shor's algorithm to its physical realization using Josephson junction qubits. In order to meet the stringent requirements set by a short decoherence time, we accelerate the algorithm by decomposing the quantum circuit into tailored two- and three-qubit gates and we find their physical realizations through numerical optimization.Comment: 12 pages, submitted to Phys. Rev.

    Star Architecture as Socio-Material Assemblage

    Get PDF
    Taking inspiration from new materialism and assemblage, the chapter deals with star architects and iconic buildings as socio-material network effects that do not pre-exist action, but are enacted in practice, in the materiality of design crafting and city building. Star architects are here conceptualized as part of broader assemblages of actors and practices ‘making star architecture’ a reality, and the buildings they design are considered not just as unique and iconic objects, but dis-articulated as complex crafts mobilizing skills, technologies, materials, and forms of knowledge not necessarily ascribable to architecture. Overcoming narrow criticism focusing on the symbolic order of icons as unique creations and alienated repetitions of capitalist development, the chapter’s main aim is to widen the scope of critique by bridging culture and economy, symbolism and practicality, making star architecture available to a broad, fragmented arena of (potential) critics, unevenly equipped with critical tools and differentiated experiences

    Full Counting Statistics of Non-Commuting Variables: the Case of Spin Counts

    Full text link
    We discuss the Full Counting Statistics of non-commuting variables with the measurement of successive spin counts in non-collinear directions taken as an example. We show that owing to an irreducible detector back-action, the FCS in this case may be sensitive to the dynamics of the detectors, and may differ from the predictions obtained with using a naive version of the Projection Postulate. We present here a general model of detector dynamics and path-integral approach to the evaluation of FCS. We concentrate further on a simple "diffusive" model of the detector dynamics where the FCS can be evaluated with transfer-matrix method. The resulting probability distribution of spin counts is characterized by anomalously large higher cumulants and substantially deviates from Gaussian Statistics.Comment: 11 pages, 3 figure

    The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-inequality violations require fine-tuning

    Full text link
    An active area of research in the fields of machine learning and statistics is the development of causal discovery algorithms, the purpose of which is to infer the causal relations that hold among a set of variables from the correlations that these exhibit. We apply some of these algorithms to the correlations that arise for entangled quantum systems. We show that they cannot distinguish correlations that satisfy Bell inequalities from correlations that violate Bell inequalities, and consequently that they cannot do justice to the challenges of explaining certain quantum correlations causally. Nonetheless, by adapting the conceptual tools of causal inference, we can show that any attempt to provide a causal explanation of nonsignalling correlations that violate a Bell inequality must contradict a core principle of these algorithms, namely, that an observed statistical independence between variables should not be explained by fine-tuning of the causal parameters. In particular, we demonstrate the need for such fine-tuning for most of the causal mechanisms that have been proposed to underlie Bell correlations, including superluminal causal influences, superdeterminism (that is, a denial of freedom of choice of settings), and retrocausal influences which do not introduce causal cycles.Comment: 29 pages, 28 figs. New in v2: a section presenting in detail our characterization of Bell's theorem as a contradiction arising from (i) the framework of causal models, (ii) the principle of no fine-tuning, and (iii) certain operational features of quantum theory; a section explaining why a denial of hidden variables affords even fewer opportunities for causal explanations of quantum correlation
    • …
    corecore