104 research outputs found
Simple pressure gauge for uranium hexafluoride
A sensitive detector and pressure gauge for uranium hexafluoride in high‐vacuum systems is described. Negative surface ionization of UF_6 occurs on ribbon filaments operated at temperatures too low for electron emission to be significant. The ion current measured on a cylindrical collector surrounding the filament assembly varies regularly with UF_6 pressure below 10^(−3) Torr. Different filament materials are considered, including rhenium, thoriated tungsten, and platinum. Rhenium is found to be the most satisfactory material for operation of diode emitters as a pressure gauge. Gauge constants (in A Torr^(−1)) are derived from comparing negative surface ionization currents with the response of a capacitance manometer and are shown to be independent of temperature within a reasonable operating range. The effects of exposing the rhenium filament to various gases is considered, and it is shown that brief exposure to acetylene substantially improves the operating characteristics of the gauge
Dissociative electron attachment reactions of transition metal carbonyls and their apparent influence on the thermalization of electrons by CO2
Dissociative electron attachment rates are measured for the transition metal carbonyls V(CO)6, Cr(CO)6, Fe(CO)5, Ni(CO)4, Mo(CO)6, and W(CO)6. Rates are measured as a function of the pressure of CO2 added to relax epithermal electrons. Derived thermal rate constants for the formation of M(CO)-n-1 from M(CO)n are 0.6, 3.0, 2.0, 2.0, 1.3, and 1.2×10^−7 cm3 molecule−1 s−1, respectively. The differences in these rate constants may be attributed to the different stabilities of the molecular anion with regard to dissociation versus autodetachment. The measured rate of thermalization of electrons by CO2 varies with the metal carbonyl used and depends on the variation of the dissociative electron capture cross section with electron energy. Each system is thus tightly coupled in that the electron energy distribution is determined not only by collisional processes involving CO2 but varies as well with the energy dependent depletion of the distribution by reactant species
IMPaCT - Integration of Missions, Programs, and Core Technologies
IMPaCT enables comprehensive information on current NASA missions, prospective future missions, and the technologies that NASA is investing in, or considering investing in, to be accessed from a common Web-based interface. It allows dependencies to be established between missions and technology, and from this, the benefits of investing in individual technologies can be determined. The software also allows various scenarios for future missions to be explored against resource constraints, and the nominal cost and schedule of each mission to be modified in an effort to fit within a prescribed budget
Pluto Integrated Camera-Spectrometer (PICS): A Low Mass, Low Power Instrument for Planetary Exploration
The concept we describe is an integrated instrument (a Pluto Integrated Camera Spectrometer, PICS) that will perform the functions of all three optical instruments required by the Pluto Fast Flyby Mission: the near-IR spectrometer, the camera, and the UV spectrometer. This integrated approach minimizes mass and power use. It also forced us early in the conceptual design to consider integrated observational sequences and integrated power management, thus ensuring compatible duty cycles (i.e. exposure times, readout rates) to meet the composite requirements for data collection, compression, and storage. Based on flight mission experience we believe that this integrated approach will result in substantial cost savings, both in reworking instrument designs during accommodation, as well as in sequence planning and integration. Finally, this integrated payload automatically yields a cohesive mission data set, optimized for correlative analysis. In our baseline concept, a single set of lightweight, multi-wavelength foreoptics is shared by an UV imaging spectrometer (160 spectral channels 10-150 nm), a two-CCD visible imaging system (simultaneously shuttered in two colors 300-500 nm and 500-1000 nm), and a near-IR imaging spectrometer (256 spectral channels 1300-2600 nm), The entire structure and optics is built from SiC, and includes an integrated radiator for thermal control. The design has no moving parts and each spectrometer covers a single octave in wavelength. For the Pluto mission, a separate port (aligned in a direction compatible with the radio occultation experiment) is provided for PICS measurement of a UV solar occultation and for spectral radiance calibration of the IR and visible subsystems. The integrated science this instrument will yield meets or exceeds all of the Priority-1A science objectives and captures many Priority-1B science objectives as well. The presentation will provide details of the PICS instrument design and describe the fabrication and testing of the integrated SiC structure and optics at SSG Inc. Final integration and test plans for the prototype will also be described
Mineralogy
The power of mineralogical analysis as a descriptive or predictive technique stems from the fact that only a few thousand minerals are known to occur in nature as compared to several hundred thousand inorganic compounds. Further, all of the known minerals have specific stability ranges in pressure, temperature, an composition. A specific knowledge of the mineralogy of a planets surface or interior therefore allows one to characterize the present or past conditions under which the minerals were formed or have existed. For the purposes of this paper, a slightly broader definition of mineralogy was adopted by including not only crystalline materials found on planetary surfaces, but also ices and classes that can benefit from in situ types of analyses. Both visual examination and the various spectroscopies available for robotic probes to planetary surfaces are discussed
Advancing the Scientific Frontier with Increasingly Autonomous Systems
A close partnership between people and partially autonomous machines has
enabled decades of space exploration. But to further expand our horizons, our
systems must become more capable. Increasing the nature and degree of autonomy
- allowing our systems to make and act on their own decisions as directed by
mission teams - enables new science capabilities and enhances science return.
The 2011 Planetary Science Decadal Survey (PSDS) and on-going pre-Decadal
mission studies have identified increased autonomy as a core technology
required for future missions. However, even as scientific discovery has
necessitated the development of autonomous systems and past flight
demonstrations have been successful, institutional barriers have limited its
maturation and infusion on existing planetary missions. Consequently, the
authors and endorsers of this paper recommend that new programmatic pathways be
developed to infuse autonomy, infrastructure for support autonomous systems be
invested in, new practices be adopted, and the cost-saving value of autonomy
for operations be studied.Comment: 10 pages (compared to 8 submitted to PSADS), 2 figures, submitted to
National Academy of Sciences Planetary Science and Astrobiology Decadal
Survey 2023-203
- …