19 research outputs found

    Phylogenomic Analysis of Salmonella enterica subsp. enterica Serovar Bovismorbificans from Clinical and Food Samples Using Whole Genome Wide Core Genes and kmer Binning Methods to Identify Two Distinct Polyphyletic Genome Pathotypes

    Full text link
    Salmonella enterica subsp. enterica serovar Bovismorbificans has caused multiple outbreaks involving the consumption of produce, hummus, and processed meat products worldwide. To elucidate the intra-serovar genomic structure of S. Bovismorbificans, a core-genome analysis with 2690 loci (based on 150 complete genomes representing Salmonella enterica serovars developed as part of this study) and a k-mer-binning based strategy were carried out on 95 whole genome sequencing (WGS) assemblies from Swiss, Canadian, and USA collections of S. Bovismorbificans strains from foodborne infections. Data mining of a digital DNA tiling array of legacy SARA and SARB strains was conducted to identify near-neighbors of S. Bovismorbificans. The core genome analysis and the k-mer-binning methods identified two polyphyletic clusters, each with emerging evolutionary properties. Four STs (2640, 142, 1499, and 377), which constituted the majority of the publicly available WGS datasets from >260 strains analyzed by k-mer-binning based strategy, contained a conserved core genome backbone with a different evolutionary lineage as compared to strains comprising the other cluster (ST150). In addition, the assortment of genotypic features contributing to pathogenesis and persistence, such as antimicrobial resistance, prophage, plasmid, and virulence factor genes, were assessed to understand the emerging characteristics of this serovar that are relevant clinically and for food safety concerns. The phylogenomic profiling of polyphyletic S. Bovismorbificans in this study corresponds to intra-serovar variations observed in S. Napoli and S. Newport serovars using similar high-resolution genomic profiling approaches and contributes to the understanding of the evolution and sequence divergence of foodborne Salmonellae. These intra-serovar differences may have to be thoroughly understood for the accurate classification of foodborne Salmonella strains needed for the uniform development of future food safety mitigation strategies

    Characterization of Cronobacter sakazakii Strains Originating from Plant-Origin Foods Using Comparative Genomic Analyses and Zebrafish Infectivity Studies

    Full text link
    Cronobacter sakazakii continues to be isolated from ready-to-eat fresh and frozen produce, flours, dairy powders, cereals, nuts, and spices, in addition to the conventional sources of powdered infant formulae (PIF) and PIF production environments. To understand the sequence diversity, phylogenetic relationship, and virulence of C. sakazakii originating from plant-origin foods, comparative molecular and genomic analyses, and zebrafish infection (ZI) studies were applied to 88 strains. Whole genome sequences of the strains were generated for detailed bioinformatic analysis. PCR analysis showed that all strains possessed a pESA3-like virulence plasmid similar to reference C. sakazakii clinical strain BAA-894. Core genome analysis confirmed a shared genomic backbone with other C. sakazakii strains from food, clinical and environmental strains. Emerging nucleotide diversity in these plant-origin strains was highlighted using single nucleotide polymorphic alleles in 2000 core genes. DNA hybridization analyses using a pan-genomic microarray showed that these strains clustered according to sequence types (STs) identified by multi-locus sequence typing (MLST). PHASTER analysis identified 185 intact prophage gene clusters encompassing 22 different prophages, including three intact Cronobacter prophages: ENT47670, ENT39118, and phiES15. AMRFinderPlus analysis identified the CSA family class C β-lactamase gene in all strains and a plasmid-borne mcr-9.1 gene was identified in three strains. ZI studies showed that some plant-origin C. sakazakii display virulence comparable to clinical strains. Finding virulent plant-origin C. sakazakii possessing significant genomic features of clinically relevant STs suggests that these foods can serve as potential transmission vehicles and supports widening the scope of continued surveillance for this important foodborne pathogen

    Occurrence of Pediocin PA-1/AcH-Like Bacteriocin in Native Non-starter Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus from retail Cheddar cheese

    No full text
    Bacteriocin producing Lactobacillus paracasei, Lactobacillus casei and Lactobacillus rhamnosus were isolated from retail Cheddar cheese and identified by both phenotypic and molecular methods. These isolates were found to produce bacteriocins with broad-spectrum activity against several foodborne pathogens: Listeria monocytogenes, Bacillus cereus, Salmonella typhi, E. coli O157:H7, Enterococcus faecalis, Enterococcus faecium and Pseudomonas aeruginosa. Further characterization of the bacteriocins showed that they had extremely high thermostability as activity was maintained after boiling for 6.5 h. In addition, autoclaving for 45 minutes had no significant effect on the activity. Similarly, storage at -20 ⁰C, 4 ⁰C, 25 ⁰C, 37 ⁰C and 45 ⁰C for up to 30 days did not reduce the activity. PCR amplification analysis of the isolates with pediocin general primers identified a 332 bp DNA fragment while pediocin PA-1 specific primers identified a 1044 bp pediocin PA-1 structural gene in all the isolates. Nucleotide sequencing of the pediocin PA-1 gene showed 99% homology to Lactobacillus plantarum plasmid pWHE92 production operon. To the best of our knowledge, this is the first report on the presence of pediocin PA-1/AcH-like bacteriocin in other species of Lactobacillus outside L. plantarum. This study gives new insight in the occurrence of pediocin PA-1/AcH-like bacteriocin in the genus Lactobacillus

    Evaluation of a multiplex PCR method to serotype Salmonella in animal feeds pre-enrichment broth cultures

    No full text
    The identification of Salmonella enterica serotypes remains a highly important public health concern for microbiological analysis of foods, feeds, and clinical samples. Outbreaks of human salmonellosis are sometimes linked to contact with infected animals and animal feeds. To possibly reduce the number of outbreaks, it is important to rapidly, efficiently detect Salmonella enterica in animal feeds and food products. A multiplex PCR for molecular serotyping of Salmonella enterica previously used in a single lab validation study for serotyping in multiple human food matrices was used in this investigation to evaluate the effectiveness of the multiplex PCR assay as serotyping method and screening tool for Salmonella in animal feeds. This approach is unique in that: • The multiplex PCR serotyping assay may be used for rapid screening and serotyping of Salmonella enterica from contaminated animal feed at the non-selective pre-enrichment step. • The assay may provide the serotype or identification of Salmonella in positive samples at concentration as low as 10 CFU/25 g after a 24 h non-selective pre-enrichment step. • In addition to the ability to serotype, this assay contains invA as an internal control for Salmonella positive identification. The invA shows positive indication for Salmonella outside of the 30 serotypic banding patterns

    Whole Genome DNA Sequence Analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks.

    No full text
    Establishing an association between possible food sources and clinical isolates requires discriminating the suspected pathogen from an environmental background, and distinguishing it from other closely-related foodborne pathogens. We used whole genome sequencing (WGS) to Salmonella subspecies enterica serotype Tennessee (S. Tennessee) to describe genomic diversity across the serovar as well as among and within outbreak clades of strains associated with contaminated peanut butter. We analyzed 71 isolates of S. Tennessee from disparate food, environmental, and clinical sources and 2 other closely-related Salmonella serovars as outgroups (S. Kentucky and S. Cubana), which were also shot-gun sequenced. A whole genome single nucleotide polymorphism (SNP) analysis was performed using a maximum likelihood approach to infer phylogenetic relationships. Several monophyletic lineages of S. Tennessee with limited SNP variability were identified that recapitulated several food contamination events. S. Tennessee clades were separated from outgroup salmonellae by more than sixteen thousand SNPs. Intra-serovar diversity of S. Tennessee was small compared to the chosen outgroups (1,153 SNPs), suggesting recent divergence of some S. Tennessee clades. Analysis of all 1,153 SNPs structuring an S. Tennessee peanut butter outbreak cluster revealed that isolates from several food, plant, and clinical isolates were very closely related, as they had only a few SNP differences between them. SNP-based cluster analyses linked specific food sources to several clinical S. Tennessee strains isolated in separate contamination events. Environmental and clinical isolates had very similar whole genome sequences; no markers were found that could be used to discriminate between these sources. Finally, we identified SNPs within variable S. Tennessee genes that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks. Using WGS can delimit contamination sources for foodborne illnesses across multiple outbreaks and reveal otherwise undetected DNA sequence differences essential to the tracing of bacterial pathogens as they emerge

    Whole-Genome Sequencing of Salmonella enterica subsp. enterica Serovar Cubana Strains Isolated from Agricultural Sources

    No full text
    We report the draft genomes of Salmonella enterica subsp. enterica serovar Cubana strain CVM42234, isolated from chick feed in 2012, and S. Cubana strain 76814, isolated from swine in 2004. The genome sizes are 4,975,046 and 4,936,251 bp, respectively

    Phylogenomic Analysis of Salmonella enterica subsp. enterica Serovar Bovismorbificans from Clinical and Food Samples Using Whole Genome Wide Core Genes and kmer Binning Methods to Identify Two Distinct Polyphyletic Genome Pathotypes

    No full text
    Salmonella enterica subsp. enterica serovar Bovismorbificans has caused multiple outbreaks involving the consumption of produce, hummus, and processed meat products worldwide. To elucidate the intra-serovar genomic structure of S. Bovismorbificans, a core-genome analysis with 2690 loci (based on 150 complete genomes representing Salmonella enterica serovars developed as part of this study) and a k-mer-binning based strategy were carried out on 95 whole genome sequencing (WGS) assemblies from Swiss, Canadian, and USA collections of S. Bovismorbificans strains from foodborne infections. Data mining of a digital DNA tiling array of legacy SARA and SARB strains was conducted to identify near-neighbors of S. Bovismorbificans. The core genome analysis and the k-mer-binning methods identified two polyphyletic clusters, each with emerging evolutionary properties. Four STs (2640, 142, 1499, and 377), which constituted the majority of the publicly available WGS datasets from >260 strains analyzed by k-mer-binning based strategy, contained a conserved core genome backbone with a different evolutionary lineage as compared to strains comprising the other cluster (ST150). In addition, the assortment of genotypic features contributing to pathogenesis and persistence, such as antimicrobial resistance, prophage, plasmid, and virulence factor genes, were assessed to understand the emerging characteristics of this serovar that are relevant clinically and for food safety concerns. The phylogenomic profiling of polyphyletic S. Bovismorbificans in this study corresponds to intra-serovar variations observed in S. Napoli and S. Newport serovars using similar high-resolution genomic profiling approaches and contributes to the understanding of the evolution and sequence divergence of foodborne Salmonellae. These intra-serovar differences may have to be thoroughly understood for the accurate classification of foodborne Salmonella strains needed for the uniform development of future food safety mitigation strategies
    corecore