119 research outputs found

    Potential for La Crosse virus segment reassortment in nature

    Get PDF
    The evolutionary success of La Crosse virus (LACV, family Bunyaviridae) is due to its ability to adapt to changing conditions through intramolecular genetic changes and segment reassortment. Vertical transmission of LACV in mosquitoes increases the potential for segment reassortment. Studies were conducted to determine if segment reassortment was occurring in naturally infected Aedes triseriatus from Wisconsin and Minnesota in 2000, 2004, 2006 and 2007. Mosquito eggs were collected from various sites in Wisconsin and Minnesota. They were reared in the laboratory and adults were tested for LACV antigen by immunofluorescence assay. RNA was isolated from the abdomen of infected mosquitoes and portions of the small (S), medium (M) and large (L) viral genome segments were amplified by RT-PCR and sequenced. Overall, the viral sequences from 40 infected mosquitoes and 5 virus isolates were analyzed. Phylogenetic and linkage disequilibrium analyses revealed that approximately 25% of infected mosquitoes and viruses contained reassorted genome segments, suggesting that LACV segment reassortment is frequent in nature

    Comparison of Argentinean Saint Louis Encephalitis Virus Non-Epidemic and Epidemic Strain Infections in an Avian Model

    Get PDF
    St. Louis encephalitis virus (SLEV, Flavivirus, Flaviviridae) is an emerging mosquito-borne pathogen in South America, with human SLEV encephalitis cases reported in Argentina and Brazil. Genotype III strains of SLEV were isolated from Culex quinquefasciatus mosquitoes in Cordoba, Argentina in 2005, during the largest SLEV outbreak ever reported in South America. The present study tested the hypothesis that the recent, epidemic SLEV strain exhibits greater virulence in birds as compared with a non-epidemic genotype III strain isolated from mosquitoes in Santa Fe Province 27 years earlier. The observed differences in infection parameters between adult House sparrows (Passer domesticus) that were needle-inoculated with either the epidemic or historic SLEV strain were not statistically significant. However, only the House sparrows that were infected with the epidemic strain achieved infectious-level viremia titers sufficient to infect Cx. spp. mosquitoes vectors. Furthermore, the vertebrate reservoir competence index values indicated an approximately 3-fold increase in amplification potential of House sparrows infected with the epidemic strain when pre-existing flavivirus-reactive antibodies were present, suggesting the possibility that antibody-dependent enhancement may increase the risk of avian-amplified transmission of SLEV in South America

    Genetic Association and Risk Scores in a COPD Meta-Analysis of 16,707 Subjects

    Get PDF
    The heritability of chronic obstructive pulmonary disease (COPD) cannot be fully explained by recognized genetic risk factors identified as achieving genome-wide significance. In addition, the combined contribution of genetic variation to COPD risk has not been fully explored. We sought to determine 1) whether studies of variants from previous studies of COPD or lung function in a larger sample could identify additional associated variants, particularly for severe COPD, and 2) the impact of genetic risk scores on COPD. We genotyped 3,346 single nucleotide polymorphisms (SNP) in 2,588 cases (1,803 severe COPD) and 1,782 controls from four cohorts, and performed association testing with COPD, combining these results with existing genotyping data from 6,633 cases (3,497 severe COPD) and 5,704 controls. Additionally, we developed genetic risk scores from SNPs associated with lung function and COPD and tested their discriminatory power for COPD-related measures. We identified significant associations between SNPs near PPIC (p=1.28x10-8) and PPP4R4/SERPINA1 (p=1.01x10-8) and severe COPD; the latter association may be driven by recognized variants in SERPINA1. Genetic risk scores based on SNPs previously associated with COPD and lung function had a modest ability to discriminate COPD (AUC ~0.6), and accounted for a mean 0.9-1.9% lower FEV1 percent-predicted for each additional risk allele. In a large genetic association analysis, we identified associations with severe COPD near PPIC and SERPINA1. A risk score based on combining genetic variants had modest but significant effects on risk of COPD and lung function

    A Secure Semi-Field System for the Study of Aedes aegypti

    Get PDF
    Novel vector control strategies require validation in the field before they can be widely accepted. Semi-field system (SFS) containment facilities are an intermediate step between laboratory and field trials that offer a safe, controlled environment that replicates field conditions. We developed a SFS laboratory and cage complex that simulates an urban house and yard, which is the primary habitat for Aedes aegypti, the mosquito vector of dengue in Cairns Australia. The SFS consists of a Quarantine Insectary Level-2 (QIC-2) laboratory, containing 3 constant temperature rooms, that is connected to two QIS-2 cages for housing released mosquitoes. Each cage contains the understory of a “Queenslander” timber house and associated yard. An automated air conditioning system keeps temperature and humidity to within 1°C and 5% RH of ambient conditions, respectively. Survival of released A. aegypti was high, especially for females. We are currently using the SFS to investigate the invasion of strains of Wolbachia within populations of A. aegypti

    Targeting the X Chromosome during Spermatogenesis Induces Y Chromosome Transmission Ratio Distortion and Early Dominant Embryo Lethality in Anopheles gambiae

    Get PDF
    We have exploited the high selectivity of the homing endonuclease I-PpoI for the X-linked Anopheles gambiae 28S ribosomal genes to selectively target X chromosome carrying spermatozoa. Our data demonstrated that in heterozygous males, the expression of I-PpoI in the testes induced a strong bias toward Y chromosome–carrying spermatozoa. Notably, these male mosquitoes also induced complete early dominant embryo lethality in crosses with wild-type females. Morphological and molecular data indicated that all spermatozoa, irrespectively of the inheritance of the transgene, carried a substantial amount of I-PpoI protein that could attack the maternally inherited chromosome X of the embryo. Besides the obvious implications for implementing vector control measures, our data demonstrated the feasibility of generating synthetic sex distorters and revealed the intriguing possibility of manipulating maternally inherited genes using wild-type sperm cells carrying engineered endonucleases

    Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal

    Get PDF
    Unlike most known flaviviruses (Family, Flaviviridae: Genus, Flavivirus), insect-only flaviviruses are a unique group of flaviviruses that only infect invertebrates. The study of insect-only flaviviruses has increased in recent years due to the discovery and characterization of numerous novel flaviviruses from a diversity of mosquito species around the world. The widespread discovery of these viruses has prompted questions regarding flavivirus evolution and the potential impact of these viruses on the transmission of flaviviruses of public health importance such as WNV. Therefore, we tested the effect of Culex flavivirus Izabal (CxFV Izabal), an insect-only flavivirus isolated from Culex quinquefasciatus mosquitoes in Guatemala, on the growth and transmission of a strain of WNV isolated concurrently from the same mosquito species and location. Prior infection of C6/36 (Aedes albopictus mosquito) cells or Cx. quinquefasciatus with CxFV Izabal did not alter the replication kinetics of WNV, nor did it significantly affect WNV infection, dissemination, or transmission rates in two different colonies of mosquitoes that were fed blood meals containing varying concentrations of WNV. These data demonstrate that CxFV probably does not have a significant effect on WNV transmission efficiency in nature

    Targeting the X Chromosome during Spermatogenesis Induces Y Chromosome Transmission Ratio Distortion and Early Dominant Embryo Lethality in Anopheles gambiae

    Get PDF
    We have exploited the high selectivity of the homing endonuclease I-PpoI for the X-linked Anopheles gambiae 28S ribosomal genes to selectively target X chromosome carrying spermatozoa. Our data demonstrated that in heterozygous males, the expression of I-PpoI in the testes induced a strong bias toward Y chromosome–carrying spermatozoa. Notably, these male mosquitoes also induced complete early dominant embryo lethality in crosses with wild-type females. Morphological and molecular data indicated that all spermatozoa, irrespectively of the inheritance of the transgene, carried a substantial amount of I-PpoI protein that could attack the maternally inherited chromosome X of the embryo. Besides the obvious implications for implementing vector control measures, our data demonstrated the feasibility of generating synthetic sex distorters and revealed the intriguing possibility of manipulating maternally inherited genes using wild-type sperm cells carrying engineered endonucleases

    Genetic Characterization of Venezuelan Equine Encephalitis Virus from Bolivia, Ecuador and Peru: Identification of a New Subtype ID Lineage

    Get PDF
    Venezuelan equine encephalitis virus (VEEV) has been responsible for hundreds of thousands of human and equine cases of severe disease in the Americas. A passive surveillance study was conducted in Peru, Bolivia and Ecuador to determine the arboviral etiology of febrile illness. Patients with suspected viral-associated, acute, undifferentiated febrile illness of <7 days duration were enrolled in the study and blood samples were obtained from each patient and assayed by virus isolation. Demographic and clinical information from each patient was also obtained at the time of voluntary enrollment. In 2005–2007, cases of Venezuelan equine encephalitis (VEE) were diagnosed for the first time in residents of Bolivia; the patients did not report traveling, suggesting endemic circulation of VEEV in Bolivia. In 2001 and 2003, VEE cases were also identified in Ecuador. Since 1993, VEEV has been continuously isolated from patients in Loreto, Peru, and more recently (2005), in Madre de Dios, Peru. We performed phylogenetic analyses with VEEV from Bolivia, Ecuador and Peru and compared their relationships to strains from other parts of South America. We found that VEEV subtype ID Panama/Peru genotype is the predominant one circulating in Peru. We also demonstrated that VEEV subtype ID strains circulating in Ecuador belong to the Colombia/Venezuela genotype and VEEV from Madre de Dios, Peru and Cochabamba, Bolivia belong to a new ID genotype. In summary, we identified a new major lineage of enzootic VEEV subtype ID, information that could aid in the understanding of the emergence and evolution of VEEV in South America
    corecore