5,009 research outputs found
VARIATION IN LANDING DURING GYMNASTICS SKILLS
The aim of this study was to examine joint motion during landing from a variety of gymnastics skills. Twelve gymnasts performed a range of gymnastics skills with a landing
component. Joint angles of the ankle, knee and hip were examined during landing from five different skills. There were significant differences between skills at all joints for peak
flexion and extension (ankle, knee and hip:
METHOD FOR THE DETECTION OF FATIGUE DURING GYMNASTICS TRAINING
The purpose of this study was to determine if acceleration measured at the pelvis was a suitable indicator of fatigue in gymnasts. Fourteen gymnasts performed vertical jumps and drop landings pre and post a fatiguing jumping activity. Peak acceleration during landing for jumps and drops increased significantly after fatiguing activity. Acceleration is a tool that can be collected with limited disruption to gymnastics training and an increase in peak acceleration during landing of simple jumps appears to be a useful tool for determining whether gymnasts are fatigued
METHOD FOR ANALYSING THE RISK OF OVERUSE INJURY IN GYMNASTICS
The purpose of this study was to propose and assess a method for the evaluation of all loads experienced during gymnastics training. The method is based on the measurement of acceleration on the gymnast. Twelve gymnasts performed a range of gymnastics skills with an impact component. Ground reaction forces and acceleration at the pelvis were measured. There were significant correlations between peak GRF and peak acceleration during landing from gymnastics skills for individual participants. This testing showed the potential for this method to be applied in a study of injury risk factors outside the laboratory environment. At present, this relationship means that acceleration can be used as an estimation of force, after calibrating acceleration to ground reaction force for the individual
A stem-cell-derived platform enables complete Cryptosporidium development in vitro and genetic tractability
Despite being a frequent cause of severe diarrheal disease in infants and an opportunistic infection in immunocompromised patients, Cryptosporidium research has lagged due to a lack of facile experimental methods. Here, we describe a platform for complete life cycle development and long-term growth of C. parvum in vitro using air-liquid interface (ALI) cultures derived from intestinal epithelial stem cells. Transcriptomic profiling revealed that differentiating epithelial cells grown under ALI conditions undergo profound changes in metabolism and development that enable completion of the parasite life cycle in vitro. ALI cultures support parasite expansion \u3e 100-fold and generate viable oocysts that are transmissible in vitro and to mice, causing infection and animal death. Transgenic parasite lines created using CRISPR/Cas9 were used to complete a genetic cross in vitro, demonstrating Mendelian segregation of chromosomes during meiosis. ALI culture provides an accessible model that will enable innovative studies into Cryptosporidium biology and host interactions
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier
These reports present the results of the 2013 Community Summer Study of the
APS Division of Particles and Fields ("Snowmass 2013") on the future program of
particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the
program of research relevant to cosmology and the early universe. This area
includes the study of dark matter and the search for its particle nature, the
study of dark energy and inflation, and cosmic probes of fundamental
symmetries.Comment: 61 page
Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017
We present multiwavelength, multi-telescope, ground-based follow-up
photometry of the white dwarf WD 1145+017, that has recently been suggested to
be orbited by up to six or more, short-period, low-mass, disintegrating
planetesimals. We detect 9 significant dips in flux of between 10% and 30% of
the stellar flux from our ground-based photometry. We observe transits deeper
than 10% on average every ~3.6 hr in our photometry. This suggests that WD
1145+017 is indeed being orbited by multiple, short-period objects. Through
fits to the multiple asymmetric transits that we observe, we confirm that the
transit egress timescale is usually longer than the ingress timescale, and that
the transit duration is longer than expected for a solid body at these short
periods, all suggesting that these objects have cometary tails streaming behind
them. The precise orbital periods of the planetesimals in this system are
unclear from the transit-times, but at least one object, and likely more, have
orbital periods of ~4.5 hours. We are otherwise unable to confirm the specific
periods that have been reported, bringing into question the long-term stability
of these periods. Our high precision photometry also displays low amplitude
variations suggesting that dusty material is consistently passing in front of
the white dwarf, either from discarded material from these disintegrating
planetesimals or from the detected dusty debris disk. For the significant
transits we observe, we compare the transit depths in the V- and R-bands of our
multiwavelength photometry, and find no significant difference; therefore, for
likely compositions the radius of single-size particles in the cometary tails
streaming behind the planetesimals in this system must be ~0.15 microns or
larger, or ~0.06 microns or smaller, with 2-sigma confidence.Comment: 16 pages, 12 figures, submitted to ApJ on October 8th, 201
Elemental energy spectra of cosmic rays measured by CREAM-II
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei
from the second flight of the balloon-borne experiment CREAM (Cosmic Ray
Energetics And Mass). The instrument (CREAM-II) was comprised of detectors
based on different techniques (Cherenkov light, specific ionization in
scintillators and silicon sensors) to provide a redundant charge identification
and a thin ionization calorimeter capable of measuring the energy of cosmic
rays up to several hundreds of TeV. The data analysis is described and the
individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14
eV. The spectral shape looks nearly the same for all the primary elements and
can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen
absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan
Measurements of cosmic-ray energy spectra with the 2nd CREAM flight
During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And
Mass) balloon experiment collected data for 28 days, measuring the charge and
the energy of cosmic rays (CR) with a redundant system of particle
identification and an imaging thin ionization calorimeter. Preliminary direct
measurements of the absolute intensities of individual CR nuclei are reported
in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very
High Energy Cosmic Ray Interactions (ISVHECRI 2008
- …