100 research outputs found

    The Oxidative Stress May be Induced by the Elevated Homocysteine in Schizophrenic Patients

    Get PDF
    The mechanisms of oxidative stress in schizophrenic patients are not fully understood. In the present study, we investigated the effect of elevated level of homocysteine (Hcys) on some parameters of oxidative stress, namely thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation in plasma, the level of carbonyl groups in plasma proteins, as well as the amount of 3-nitrotyrosine in plasma proteins isolated from schizophrenic patients. Patients hospitalised in I and II Psychiatric Department of Medical University in Lodz, Poland were interviewed with special questionnaire (treatment, course of diseases, dyskinesis and other EPS). According to DSM-IV criteria all patients had diagnosis of paranoid type. They were treated with antipsychotic drugs (clozapine, risperidone, olanzapine). Mean time of schizophrenia duration was about 5 years. High-performance liquid chromatography was used to analyse the total level of homocysteine in plasma. Levels of carbonyl groups and 3-nitrotyrosine residues in plasma proteins were measured by ELISA and a competition ELISA, respectively. The lipid peroxidation in plasma was measured by the level of TBARS. Our results showed that in schizophrenic patients the amount of homocysteine in plasma was higher in comparison with the control group. We also observed a statistically increased level of biomarkers of oxidative/nitrative stress such as carbonyl groups or 3-nitrotyrosine in plasma proteins from schizophrenic patients. Moreover, our experiments indicate that the correlation between the increased amount of homocysteine and the oxidative stress exists. Considering the data presented in this study, we suggest that the elevated Hcys in schizophrenic patients may stimulate the oxidative stress

    Relationship of urinary isoprostanes to prostate cancer occurence

    Get PDF
    To estimate the oxidative stress in patients with prostate cancer and in a control group, we used the biomarker of lipid peroxidation–isoprostanes (8-isoPGF2) and the level of selected antioxidants (glucose and uric acid [UA]). The level of urinary isoprostanes was determined in patients and controls using an immunoassay kit according to the manufacturer’s instruction. The levels of UA and glucose were also determined in serum by the use of UA Assay Kit and Glucose Assay Kit. We observed a statistically increased the level of isoprostanes in urine of patients with prostate cancer in compared with a control group. The concentration of tested antioxidants in blood from patients with prostate cancer was also higher than in healthy subjects. Moreover, our experiments indicate that the correlation between the increased amount of UA and the lipid peroxidation exists in prostate cancer patients (in all tested groups). Prostate cancer risk by urinary isoprostanes level was analyzed, and a positive association was found (relative risk for highest vs. lowest quartile of urinary isoprostanes = 1.6; 95 % confidence interval 1.2–2.4; p for trend = 0.03). We suggest that reactive oxygen species induce peroxidation of unsaturated fatty acid in patients with prostate cancer, and the level of isoprostanes may be used as a non-invasive marker for determination of oxidative stress. We also propose that UA may enhance the oxidative stress in patients with prostate cancer.This study was supported by the Grant 506/810(KBO) from University of Lodz, Polan

    The Antioxidant Potential of Graviola and Its Potential Medicinal Application

    No full text
    Graviola (Annunona muricata L.), a plant growing in tropical regions, has many names and a range of ethnomedicinal uses. The leaves are used to treat insomnia, diabetes, cystitis, and headaches, the crushed seeds have anthelmintic properties, and the fruits are used in the preparation of ice creams, candy, syrups, shakes, and other beverages. The key active components are believed to be annonaceous acetogenins, with more than 100 such compounds having been isolated from A. muricata. The plant is also a source of a range of phenolic compounds, essential oils, alkaloids, flavonol triglycosides, and megastigmanes, together with various minerals, including Mg, Fe, Cu, K, and Ca. Its key phenolic compounds are rutin, kaempferol, and quercetin. This paper provides an overview of the current state of knowledge about the antioxidant properties of various graviola organs and their major constituents, based on a review of various electronic databases. However, few findings have been obtained from clinical trials, and few in vitro and animal studies suggest that graviola preparations have antioxidant properties; as such, the antioxidant potential of graviola, and its safety, remain unclear

    The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders

    No full text
    Diet and nutrition have an important influence on the prophylaxis and progression of cardiovascular disease; one example is the inhibition of blood platelet functions by specific components of fruits and vegetables. Garlic, onion, ginger, dark chocolate and polyunsaturated fatty acids all reduce blood platelet aggregation. A number of fruits contain a range of cardioprotective antioxidants and vitamins, together with a large number of non-nutrient phytochemicals such as phenolic compounds, which may possess both antioxidant properties and anti-platelet activity. Fresh berries and berry extracts possess high concentrations of phenolic compounds, i.e. phenolic acid, stilbenoids, flavonoids and lignans. The aim of this review article is to provide an overview of current knowledge of the anti-platelet activity of berries, which form an integral part of the human diet. It describes the effects of phenolic compounds present in a number of berries, i.e. black chokeberries – aronia berries (Aronia melanocarpa), blueberries (Vaccinium myrtillus), cranberries (Vaccinium sect. Oxycoccus), sea buckthorn berries (Hippophae rhamnoides) and grapes (Vitis), as well as various commercial products from berries (i.e. juices), on platelets and underlying mechanisms. Studies show that the effects of berries on platelet activity are dependent on not only the concentrations of the phenolic compounds in the berries or the class of phenolic compounds, but also the types of berry and the form (fresh berry, juice or medicinal product). Different results indicate that berries may play a role in the prevention of cardiovascular disorders, but the development of well-controlled clinical studies with berries is encouraged

    New Perspectives on the Effect of Dandelion, Its Food Products and Other Preparations on the Cardiovascular System and Its Diseases

    No full text
    Cardiovascular diseases (CVDs) have been the leading cause of death for over 20 years. The main causative factors are believed to be high cholesterol, obesity, smoking, diabetes, and a lack of physical activity. One of the most commonly used treatments is a combination of anticoagulant and antithrombotic therapy; however, it often causes unwanted side effects. The European Society of Cardiology, therefore, recommends a prophylactic strategy, including a varied diet rich in fruits, vegetables, and medicinal plants; all of which are sources of natural compounds with antiplatelet, anticoagulant, or antioxidant activities, such as phenolic compounds. One such plant with multidirectional health-promoting effects and a rich source of secondary metabolites, including phenolic compounds, is dandelion (Taraxacum officinale). The present mini-review presents the current state of knowledge concerning the effects of dandelion consumption on the cardiovascular system and CVDs based on various in vitro and in vivo trials; it discusses the value of dandelion as a food product, as well as extracts and pure compounds, such as chicoric acid, which can be obtained from the various plant organs. The paper also sheds new light on the mechanisms involved in this activity and describes the cardioprotective potential of dandelion products and preparations

    Berry Phenolic Antioxidants – Implications for Human Health?

    No full text
    Antioxidants present in the diet may have a significant effect on the prophylaxis and progression of various diseases associated with oxidative stress. Berries contain a range of chemical compounds with antioxidant properties, including phenolic compounds. The aim of this review article is to provide an overview of the current knowledge of such phenolic antioxidants, and to discuss whether these compounds may always be natural gifts for human health, based on both in vitro and in vivo studies. It describes the antioxidant properties of fresh berries (including aronia berries, grapes, blueberries, sea buckthorn berries, strawberries and other berries) and their various products, especially juices and wines. Some papers report that these phenolic compounds may sometimes behave like prooxidants, and sometimes demonstrate both antioxidant and prooxidant activity, while others note they do not behave the same way in vitro and in vivo. However, no unwanted or toxic effects (i.e., chemical, hematological or urinary effect) have been associated with the consumption of berries or berry juices or other extracts, especially aronia berries and aronia products in vivo, and in vitro, which may suggest that the phenolic antioxidants found in berries are natural gifts for human health. However, the phenolic compound content of berries and berry products is not always well described, and further studies are required to determine the therapeutic doses of different berry products for use in future clinical studies. Moreover, further experiments are needed to understand the beneficial effects reported so far from the mechanistic point of view. Therefore, greater attention should be paid to the development of well-controlled and high-quality clinical studies in this area

    Cardioprotective Potential of Berries of Schisandra chinensis Turcz. (Baill.), Their Components and Food Products

    No full text
    Schisandra chinensis (S. chinensis) berries, originally a component of traditional herbal medicine in China, Korea, and other east Asian countries, are also valuable agents in modern phototherapy. S. chinensis berry preparations, including extracts and their chemical components, demonstrate anti-cancer, hepatoprotective, anti-inflammatory, and antioxidant properties, among others. These valuable properties, and their therapeutic potential, are conditioned by the unique chemical composition of S. chinensis berries, particularly their lignan content. About 40 of these compounds, mainly dibenzocyclooctane type, were isolated from S. chinensis. The most important bioactive lignans are schisandrin (also denoted as schizandrin or schisandrol A), schisandrin B, schisantherin A, schisantherin B, schisanhenol, deoxyschisandrin, and gomisin A. The present work reviews newly-available literature concerning the cardioprotective potential of S. chinensis berries and their individual components. It places special emphasis on the cardioprotective properties of the selected lignans related to their antioxidant and anti-inflammatory characteristis

    Role of erythrocytes in blood platelet activation

    No full text
    The blood platelet activation plays an important role in haemostasis. Mechanism of platelet activation is accompanied by intracellular signal transduction pathways that are responsible for different physiological responses of platelets: changes in platelet shape, release of their granule contents and platelet aggregation. Platelets circulate in vivo together with huge masses of erythrocytes and some leukocytes. Cell-cell interactions between platelets and neutrophils or platelets and erythrocytes can significantly alter platelet reactivity. In recent years demonstrated that erythrocytes may enhance platelet release reaction and eicosanoid synthesis. Role of erythrocytes in blood platelet activation are described and eicosanoid synthesis.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę
    corecore