156 research outputs found

    Long-term correction of murine phenylketonuria by viral gene transfer: liver versus muscle

    Get PDF
    Current therapy for phenylketonuria (PKU) consists of life-long dietary restriction of phenylalanine (Phe), which presents problems of adherence for patients. Alternative therapies under investigation include, among others, the use of gene therapy to provide copies of wild-type, non-mutant, phenylalanine hydroxylase (PAH) enzyme. Expression of PAH in both liver (the usual metabolic source of this enzyme) and skeletal muscle is under investigation. Liver gene therapy, using a viral vector based on the adeno-associated viruses (AAVs), provided effective clearance of serum Phe that was sustained for 1year in some mice. In order for PAH expression to be effective in skeletal muscle, the essential metabolic cofactor, tetrahydrobiopterin (BH4), must also be provided, either by supplementation or gene therapy. Both these approaches were effective. When transgenic PKU mice that constitutively expressed PAH in muscle were given intraperitoneal supplementation with BH4, this produced (transient) effective clearance of Phe to normal levels. In addition, use of an AAV vector containing the genes for PAH, and for two key synthetic enzymes for BH4, provided substantial and long-lasting correction (more than 1year) of blood Phe levels when injected into skeletal muscle of PKU mice. These two strategies provide promising treatment alternatives for the management of PKU in patient

    BH4 deficiency with unusual presentations: Challenges and lessons

    Full text link

    Tetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: Implications for tetrahydrobiopterin-responsive hyperphenylalaninemia

    Get PDF
    AbstractThe natural cofactor of phenylalanine hydroxylase (PAH), tetrahydrobiopterin (BH4), regulates the enzyme activity as well as being essential in catalysis. BH4-responsive PAH deficiency is a variant of hyperphenylalaninemia or phenylketonuria (PKU) caused by mutations in the human PAH gene that respond to oral BH4 loading by stimulating enzyme activity and therefore lowering serum phenylalanine. Here, we showed in a coupled transcription–translation in vitro assay that upon expression in the presence of BH4, wild-type PAH enzyme activity was enhanced. We then investigated the effect of BH4 on PAH activity in transgenic mice that had a complete or partial deficiency in the endogenous cofactor biosynthesis. The rate of hepatic PAH enzyme activity increased significantly with BH4 content without affecting gene expression or Pah-mRNA stability. These results indicate that BH4 has a chaperon-like effect on PAH synthesis and/or is a protecting cofactor against enzyme auto-inactivation and degradation also in vivo. Our findings thus contribute to the understanding of the regulation of PAH by its cofactor BH4 on an additional level and provide a molecular explanation for cofactor-responsive PKU

    State-of-the-art 2023 on gene therapy for phenylketonuria

    Get PDF
    Phenylketonuria (PKU) or hyperphenylalaninemia is considered a paradigm for an inherited (metabolic) liver defect and is, based on murine models that replicate all human pathology, an exemplar model for experimental studies on liver gene therapy. Variants in the PAH gene that lead to hyperphenylalaninemia are never fatal (although devastating if untreated), newborn screening has been available for two generations, and dietary treatment has been considered for a long time as therapeutic and satisfactory. However, significant shortcomings of contemporary dietary treatment of PKU remain. A long list of various gene therapeutic experimental approaches using the classical model for human PKU, the homozygous enu2/2 mouse, witnesses the value of this model to develop treatment for a genetic liver defect. The list of experiments for proof of principle includes recombinant viral (AdV, AAV, and LV) and non-viral (naked DNA or LNP-mRNA) vector delivery methods, combined with gene addition, genome, gene or base editing, and gene insertion or replacement. In addition, a list of current and planned clinical trials for PKU gene therapy is included. This review summarizes, compares, and evaluates the various approaches for the sake of scientific understanding and efficacy testing that may eventually pave the way for safe and efficient human application

    Tetrahydrobiopterin Deficiency: From Phenotype to Genotype

    Get PDF
    As a result of the selective screening worldwide during the last 18 years, approximately 250 patients with tetrahydrobiopterin deficiency were discovered. Most patients suffer from 6-pyruvoyl tetrahydropterin synthase deficiency (58%), followed by dihydropteridine reductase deficiency (35%), GTP cyclohydrolase I deficiency (3%), and "primapterinuria” (4%). The patients can be treated with neurotransmitter precursors, as well as with tetrahydrobiopterin. However, data on long term treatment are still scarce and it is therefore of great value to investigate all newborns with even mild hyperphenylalaninemia. Cloning of the enzymes involved in the biosynthesis and regeneration of tetrahydrobiopterin makes them to be easily accessible for biochemical and biological studies. So far, all proteins expressed heterologous are active in E. coli. Cloning of the wild type gene and mutant analysis of patients allow the rapid identification of the defective gene on the molecular leve

    Diagnosis of tetrahydrobiopterin deficiency using filter paper blood spots: further development of the method and 5 years experience

    Get PDF
    In every newborn with even mild hyperphenylalaninemia (HPA) tetrahydrobiopterin (BH4) deficiencies need to be excluded as soon as possible. Differential diagnosis is most commonly performed by analysis of urinary neopterin and biopterin. In 2005 a new method for the measurement of neopterin, biopterin and other pterins in dried blood spot (DBS) on filter paper was introduced. In order to evaluate the usefulness of this method as a standard tool for differential diagnosis of HPAs we analyzed neopterin, biopterin, pterin and dihydropteridine reductase activity in DBS from 362 patients with HPA over the period of five years. Age-dependent reference values were established for the HPA population. Sixty-four patients with BH4 deficiency (27 patients with 6-pyruvoyl-tetrahydropterin synthase deficiency, seven with GTP cyclohydrolase I deficiency, and 30 with dihydropteridine reductase) were identified. Reference values for neopterin and biopterin in DBS were calculated for each of the variants. 6-pyruvoyl-tetrahydropterin synthase and GTP cyclohydrolase I deficiency can be diagnosed by neopterin and biopterin analysis alone, while for diagnosis of dihydropteridine reductase deficiency additional determination of enzyme activity from the same DBS is essential. Regarding test sensitivity, the interpretation of neopterin and biopterin concentration per hemoglobin is more valid than the interpretation of neopterin and biopterin per liter. Percentage of biopterin, of the sum of neopterin and biopterin should always be calculated. In addition, determination of hemoglobin concentration is essential as a measure for efficient extraction of neopterin and biopterin. Although the measurement of neopterin and biopterin in urine is more sensitive due to the higher concentrations present, our data prove the usefulness of their measurement from DBS for the routine diagnosis of BH4 deficiencie

    Influence of Early Stress on Social Abilities and Serotonergic Functions across Generations in Mice

    Get PDF
    Exposure to adverse environments during early development is a known risk factor for several psychiatric conditions including antisocial behavior and personality disorders. Here, we induced social anxiety and altered social recognition memory in adult mice using unpredictable maternal separation and maternal stress during early postnatal life. We show that these social defects are not only pronounced in the animals directly subjected to stress, but are also transmitted to their offspring across two generations. The defects are associated with impaired serotonergic signaling, in particular, reduced 5HT1A receptor expression in the dorsal raphe nucleus, and increased serotonin level in a dorsal raphe projection area. These findings underscore the susceptibility of social behaviors and serotonergic pathways to early stress, and the persistence of their perturbation across generations
    • 

    corecore