102 research outputs found

    Activation of necroptosis to overcome drug resistance in leukemia

    Get PDF
    The understanding of cell death mechanisms is crucial for the development and application of novel anti-cancer therapies to avoid or circumvent drug-resistance in refractory malignancies. Impairment of apoptotic cell death plays a major role in therapy resistance and relapse of acute lymphoblastic leukemia (ALL) patients. Therefore, efforts are being directed at new agents reactivating apoptosis or inducing alternative cell death pathways such as necroptosis, a regulated form of necrosis. In a recent study published in Science Translational Medicine we show that the IAP (inhibitor of apoptosis proteins) inhibitor birinapant potently induces cell death in patient-derived ALL cells in vitro and in vivo through a receptor-interacting protein kinase 1- (RIP1) dependent mechanism. To define the cell death modality induced downstream of RIP1, we used a multicolor lentiCRISPR approach that allows simultaneous knockout of multiple genes. We observed that apoptosis and necroptosis are induced simultaneously as the inhibition of both pathways is required to restore cell viability upon birinapant treatment.  This induction of dual cell death makes birinapant and other IAP inhibitors interesting agents for the treatment of refractory or drug resistant malignancies.&nbsp

    Exploiting Necroptosis for Therapy of Acute Lymphoblastic Leukemia

    Get PDF
    Escape from chemotherapy-induced apoptosis is a hallmark of drug resistance in cancer. The recent identification of alternative programmed cell death pathways opens up for possibilities to circumvent the apoptotic blockade in drug resistant cancer and eliminate malignant cells. Indeed, we have recently shown that programmed necrosis, termed necroptosis, could be triggered to induce cell death in a subgroup of primary acute lymphoblastic leukemia (ALL) including highly refractory relapsed cases. In this review we focus on molecular mechanisms that drive drug resistance in ALL of childhood and discuss the potential of necroptosis activation to eradicate resistant disease

    Tissue Expression and Actin Binding of a Novel N-Terminal Utrophin Isoform

    Get PDF
    Utrophin and dystrophin present two large proteins that link the intracellular actin cytoskeleton to the extracellular matrix via the C-terminal-associated protein complex. Here we describe a novel short N-terminal isoform of utrophin and its protein product in various rat tissues (N-utro, 62 kDa, amino acids 1–539, comprising the actin-binding domain plus the first two spectrin repeats). Using different N-terminal recombinant utrophin fragments, we show that actin binding exhibits pronounced negative cooperativity (affinity constants K1 = ∼5 × 106 and K2 = ∼1 × 105 M−1) and is Ca2+-insensitive. Expression of the different fragments in COS7 cells and in myotubes indicates that the actin-binding domain alone binds exlusively to actin filaments. The recombinant N-utro analogue binds in vitro to actin and in the cells associates to the membranes. The results indicate that N-utro may be responsible for the anchoring of the cortical actin cytoskeleton to the membranes in muscle and other tissues

    LRH-1/NR5A2 interacts with the glucocorticoid receptor to regulate glucocorticoid resistance

    Full text link
    Nuclear receptors are transcription factors with important functions in a variety of physiological and pathological processes. Targeting glucocorticoid receptor (GR) activity using glucocorticoids is a cornerstone in the treatment of patients with T cell acute lymphoblastic leukemia (T-ALL), and resistance to GC-induced cell death is associated with poor outcome and a high risk for relapse. Next to ligand-binding, heterodimerization with other transcription factors presents an important mechanism for the regulation of GR activity. Here, we describe a GC-induced direct association of the Liver Receptor Homolog-1 (LRH-1) with the GR in the nucleus, which results in reciprocal inhibition of transcriptional activity. Pharmacological and molecular interference with LRH-1 impairs proliferation and survival in T-ALL and causes a profound sensitization to GC-induced cell death, even in GC-resistant T-ALL. Our data illustrate that direct interaction between GR and LRH-1 critically regulates glucocorticoid sensitivity in T-ALL opening up new perspectives for developing innovative therapeutic approaches to treat GC-resistant T-ALL

    High Immunoproteasome Activity and sXBP1 in Pediatric Precursor B-ALL Predicts Sensitivity towards Proteasome Inhibitors

    Full text link
    Proteasome inhibitors (PIs) are approved backbone treatments in multiple myeloma. More recently, inhibition of proteasome activity with the PI bortezomib has been clinically evaluated as a novel treatment strategy in pediatric acute lymphoblastic leukemia (ALL). However, we lack a marker that could identify ALL patients responding to PI-based therapy. By using a set of activity-based proteasome probes in conjunction with cytotoxicity assays, we show that B-cell precursor ALL (BCP-ALL), in contrast to T-ALL, demonstrates an increased activity of immunoproteasome over constitutive proteasome, which correlates with high ex vivo sensitivity to the PIs bortezomib and ixazomib. The novel selective PI LU015i-targeting immunoproteasome β5i induces cytotoxicity in BCP-ALL containing high β5i activity, confirming immunoproteasome activity as a novel therapeutic target in BCP-ALL. At the same time, cotreatment with β2-selective proteasome inhibitors can sensitize T-ALL to currently available PIs, as well as to β5i selective PI. In addition, levels of total and spliced forms of XBP1 differ between BCP-ALL and T-ALL, and only in BCP-ALL does high-spliced XBP1 correlate with sensitivity to bortezomib. Thus, in BCP-ALL, high immunoproteasome activity may serve as a predictive marker for PI-based treatment options, potentially combined with XBP1 analyses

    Microphysiological Drug-Testing Platform for Identifying Responses to Prodrug Treatment in Primary Leukemia

    Get PDF
    Despite increasing survival rates of pediatric leukemia patients over the past decades, the outcome of some leukemia subtypes has remained dismal. Drug sensitivity and resistance testing on patient-derived leukemia samples provide important information to tailor treatments for high-risk patients. However, currently used well-based drug screening platforms have limitations in predicting the effects of prodrugs, a class of therapeutics that require metabolic activation to become effective. To address this issue, a microphysiological drug-testing platform is developed that enables co-culturing of patient-derived leukemia cells, human bone marrow mesenchymal stromal cells, and human liver microtissues within the same microfluidic platform. This platform also enables to control the physical interaction between the diverse cell types. Herein, it is made possible to recapitulate hepatic prodrug activation of ifosfamide in their platform, which is very difficult in traditional well-based assays. By testing the susceptibility of primary patient-derived leukemia samples to the prodrug ifosfamide, sample-specific sensitivities to ifosfamide in primary leukemia samples are identified. The microfluidic platform is found to enable the recapitulation of physiologically relevant conditions and the testing of prodrugs including short-lived and unstable metabolites. The platform holds great potential for clinical translation and precision chemotherapy selection

    B and T cell acute lymphoblastic leukemia evade chemotherapy at distinct sites in the bone marrow

    Full text link
    Persistence of residual disease after induction chemotherapy is a strong predictor of relapse in acute lymphoblastic leukemia (ALL). The bone marrow microenvironment may support treatment escape. Using 3D fluorescence imaging of 10 primary ALL xenografts we identify sites of predilection in the bone marrow for resistance to induction with dexamethasone, vincristine and doxorubicin. We detect B-cell precursor ALL cells predominantly in the perisinusoidal space at early engraftment and after chemotherapy. The spatial distribution of T-ALL cells was more widespread with contacts to endosteum, nestin+ pericytes and sinusoids. Dispersion of T-ALL cells in the bone marrow increased under chemotherapeutic pressure. A subset of slowly dividing ALL cells was transiently detected upon short-term chemotherapy, but not at residual disease after chemotherapy, challenging the notion that ALL cells escape treatment by direct induction of a dormant state in the niche. These lineage-dependent differences point to niche interactions that may be more specifically exploitable to improve treatment

    BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway

    Get PDF
    Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton’s tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc–mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453
    corecore