3,377 research outputs found
Continuously operating induction plasma accelerator Patent
Continuous operation, single phased, induction plasma accelerator producing supersonic speed
An Exploratory Investigation of the Effects of a Thin Plastic Film Cover on the Profile Drag of an Aircraft Wing Panel
Exploratory wind tunnel tests were conducted on a large chord aircraft wing panel to evaluate the potential for drag reduction resulting from the application of a thin plastic film cover. The tests were conducted at a Mach number of 0.15 over a Reynolds number range from about 7 x 10 to the 6th power to 63 x 10 to the 6th power
Wind-tunnel results for an improved 21-percent-thick low-speed airfoil section
Low speed wind tunnel tests were conducted to evaluate the effects on performance of modifying a 23 percent thick low speed airfoil. The airfoil contour was altered to reduce the upper-surface adverse pressure gradient and hence reduce boundary layer separation. The chord Reynolds number varied from about 2,000,000 to 9,000,000
Low-speed aerodynamic characteristics of a 13-percent-thick airfoil section designed for general aviation applications
Wind-tunnel tests were conducted to determine the low-speed section characteristics of a 13 percent-thick airfoil designed for general aviation applications. The results were compared with NACA 12 percent-thick sections and with the 17 percent-thick NASA airfoil. The tests were conducted ovar a Mach number range from 0.10 to 0.35. Chord Reynolds numbers varied from about 2,000,000 to 9,000,000
Laboratory investigation of diffraction and reflection of sonic booms by buildings
Laboratory investigation of diffraction and reflection of sonic booms by building
NASA low- and medium-speed airfoil development
The status of NASA low and medium speed airfoil research is discussed. Effects of airfoil thickness-chord ratios varying from 9 percent to 21 percent on the section characteristics for a design lift coefficient of 0.40 are presented for the initial low speed family of airfoils. Also, modifications to the 17-percent low-speed airfoil to reduce the pitching-moment coefficient and to the 21-percent low speed airfoil results are shown for two new medium speed airfoils with thickness ratios of 13 percent and 17 percent and design-lift coefficients of 0.30. Applications of NASA-developed airfoils to general aviation aircraft are summarized
Experimental Results for a Flapped Natural-laminar-flow Airfoil with High Lift/drag Ratio
Experimental results have been obtained for a flapped natural-laminar-flow airfoil, NLF(1)-0414F, in the Langley Low-Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.05 to 0.40 and a chord Reynolds number range from about 3.0 x 10(6) to 22.0 x 10(6). The airfoil was designed for 0.70 chord laminar flow on both surfaces at a lift coefficient of 0.40, a Reynolds number of 10.0 x 10(6), and a Mach number of 0.40. A 0.125 chord simple flap was incorporated in the design to increase the low-drag, lift-coefficient range. Results were also obtained for a 0.20 chord split-flap deflected 60 deg
Experimental and theoretical low speed aerodynamic characteristics of the NACA 65 sub 1-213, alpha equals 0.50, airfoil
Low-speed wind-tunnel tests have been conducted to determine the two-dimensional aerodynamic characteristics of the NACA 65 sub 1-213, a = 0.05, airfoil. The results were compared with data from another low-speed wind tunnel and also with theoretical predictions obtained by using a viscous subsonic method. The tests were conducted over a Mach number range from 0.10 to 0.36. Reynolds numbers based on the airfoil chord varied from about 3 million to 23 million
Effects of thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications
Wind tunnel tests were conducted to determine the effects of airfoil thickness-ratio on the low speed aerodynamic characteristics of an initial family of airfoils. The results were compared with theoretical predictions obtained from a subsonic viscous method. The tests were conducted over a Mach number range from 0.10 to 0.28. Chord Reynolds numbers varied from about 2.0 x 1 million to 9.0 x 1 million
- …