3,738 research outputs found

    Large collection of astrophysical S-factors and its compact representation

    Full text link
    Numerous nuclear reactions in the crust of accreting neutron stars are strongly affected by dense plasma environment. Simulations of superbursts, deep crustal heating and other nuclear burning phenomena in neutron stars require astrophysical S-factors for these reactions (as a function of center-of-mass energy E of colliding nuclei). A large database of S-factors is created for about 5000 non-resonant fusion reactions involving stable and unstable isotopes of Be, B, C, N, O, F, Ne, Na, Mg, and Si. It extends the previous database of about 1000 reactions involving isotopes of C, O, Ne, and Mg. The calculations are performed using the Sao Paulo potential and the barrier penetration formalism. All calculated S-data are parameterized by an analytic model for S(E) proposed before [Phys. Rev. C 82, 044609 (2010)] and further elaborated here. For a given reaction, the present S(E)-model contains three parameters. These parameters are easily interpolated along reactions involving isotopes of the same elements with only seven input parameters, giving an ultracompact, accurate, simple, and uniform database. The S(E) approximation can also be used to estimate theoretical uncertainties of S(E) and nuclear reaction rates in dense matter, as illustrated for the case of the 34Ne+34Ne reaction in the inner crust of an accreting neutron star.Comment: 13 pages, 2 figures, Phys. Rev. C, accepte

    A Time-Series Analysis of U.S. Kidney Transplantation and the Waiting List: Donor Substitution Effects and "Dirty Altruism"

    Get PDF
    This paper provides an econometric analysis of the relationship between live and deceased (cadaveric) kidney donations for the United States for the period 1992:IV through 2006:II. Statistical analysis shows that increases in deceased donor transplants reduce future live donor grafts, controlling for both waiting list effects and exogenous trends. This result has important, and potentially dire, implications for efforts to reduce the organ shortage by increasing use of cadaver donors.Kidney Transplantations; Donor Substitution Effects; Dirty Altruism; Cointegration

    A quantum Monte Carlo algorithm realizing an intrinsic relaxation

    Full text link
    We propose a new quantum Monte Carlo algorithm which realizes a relaxation intrinsic to the original quantum system. The Monte Carlo dynamics satisfies the dynamic scaling relation τξz\tau\sim \xi^z and is independent of the Trotter number. Finiteness of the Trotter number just appears as the finite-size effect. An infinite Trotter number version of the algorithm is also formulated, which enables us to observe a true relaxation of the original system. The strategy of the algorithm is a compromise between the conventional worldline local flip and the modern cluster loop flip. It is a local flip in the real-space direction and is a cluster flip in the Trotter direction. The new algorithm is tested by the transverse-field Ising model in two dimensions. An accurate phase diagram is obtained.Comment: 9 pages, 4 figure

    Astrophysical S-factors for fusion reactions involving C, O, Ne and Mg isotopes

    Full text link
    Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 MeV to 18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence S(E) by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments.Comment: 30 pages including 11 tables, 4 figures, ADNDT, accepte

    QCD as a Quantum Link Model

    Get PDF
    QCD is constructed as a lattice gauge theory in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. The resulting quantum link model for QCD is formulated with a fifth Euclidean dimension, whose extent resembles the inverse gauge coupling of the resulting four-dimensional theory after dimensional reduction. The inclusion of quarks is natural in Shamir's variant of Kaplan's fermion method, which does not require fine-tuning to approach the chiral limit. A rishon representation in terms of fermionic constituents of the gluons is derived and the quantum link Hamiltonian for QCD with a U(N) gauge symmetry is expressed in terms of glueball, meson and constituent quark operators. The new formulation of QCD is promising both from an analytic and from a computational point of view.Comment: 27 pages, including three figures. ordinary LaTeX; Submitted to Nucl. Phys.

    The Physical Origins of Entropy Production, Free Energy Dissipation and their Mathematical Representations

    Full text link
    A complete mathematical theory of nonequilibrium thermodynamics of stochastic systems in terms of master equations is presented. As generalizations of isothermal entropy and free energy, two functions of states play central roles: the Gibbs entropy SS and the relative entropy FF, which are related via the stationary distribution of the stochastic dynamics. SS satisfies the fundamental entropy balance equation dS/dt=ephd/TdS/dt=e_p-h_d/T with entropy production rate ep0e_p\ge 0 and heat dissipation rate hdh_d, while dF/dt=fd0dF/dt=-f_d\le 0. For closed systems that satisfy detailed balance: Tep(t)=fd(t)Te_p(t)=f_d(t). For open system one has Tep(t)=fd(t)+Qhk(t)Te_p(t)=f_d(t)+Q_{hk}(t) where the housekeeping heat Qhk0Q_{hk}\ge 0 was first introduced in the phenomenological nonequilibrium steady state thermodynamics. Entropy production epe_p consists of free energy dissipation associated with spontaneous relaxation, fdf_d, and active energy pumping that sustains the open system QhkQ_{hk}. The amount of excess heat involved in the relaxation Qex=hdQhk=fdT(dS/dt)Q_{ex}=h_d-Q_{hk} = f_d-T(dS/dt).Comment: 4 pages, no figure

    LU-HF Age of Martian Meteorite Larkman Nunatek 06319

    Get PDF
    Lu-Hf isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 197+/- 29 Ma. Sm-Nd isotopic data and in-situ LA-ICP-MS data from a thin section of LAR 06319 are currently being collected and will be presented at the 2009 LPSC. These new data for LAR 06319 extend the existing data set for the enriched shergottite group. Martian meteorites represent the only opportunity for ground truth investigation of the geochemistry of Mars [1]. At present, approximately 80 meteorites have been classified as Martian based on young ages and distinctive isotopic signatures [2]. LAR 06319 is a newly discovered (as part of the 2006 ANSMET field season) martian meteorite that represents an important opportunity to further our understanding of the geochemical and petrological constraints on the origin of Martian magmas. Martian meteorites are traditionally categorized into the shergottite, nakhlite, and chassignite groups. The shergottites are further classified into three distinct isotopic groups designated depleted, intermediate, and enriched [3,4] based on the isotope systematics and compositions of their source(s)

    LU-HF Age and Isotope Systematics of ALH84001

    Get PDF
    Allan Hills (ALH) 84001 is an orthopyroxenite that is unique among the Martian meteorites in having the oldest inferred crystallization age (approx..4.5 to 4.0 Gyr) [e.g., 1-6 and references therein 7]. Its ancient origin makes this stone a critical constraint on early history of Mars, in particular the evolution of different planetary crust and mantle reservoirs. However, because there is significant variability in reported crystallization ages, determination of initial isotope compositions is imprecise making assessment of planetary reservoirs difficult. Here we report a new Lu-Hf mineral isochron age, initial Hf-176/Hf-177 isotope composition, and inferred Martian mantle source compositions for ALH84001 that place constraints on longlived source reservoirs for the enriched shergottite suite of Martian meteorites including Shergotty, Zagami, NWA4468, NWA856, RBT04262, LAR06319, and Los Angeles. Sm-Nd isotope analyses are under way for the same mineral aliquots analyzed for Lu-Hf. The Lu-Hf system was utilized because Lu and Hf are both lithophile and refractory and are not easily redistributed during short-lived thermal pulses associated with shock metamorphism. Moreover, chromite has relatively modest Hf concentrations with very low Lu/Hf ratios [9] yielding tight constraints on initial Hf-176/Hf-177 isotope composition

    Ar-Ar Analysis of Chelyabinsk: Evidence for a Recent Impact

    Get PDF
    The Chelyabinsk meteorite is an LL5 ordinary chondrite that fell as a spectacular fireball on February 15th, 2013, over the Ural region in Russia. The meteoroid exploded at an altitude of 25-30 km, producing shockwaves that broke windowpanes in Chelyabinsk and surrounding areas, injuring some 1500 people. Analyses of the samples show that the meteorite underwent moderate shock metamorphism (stage S4; 25-35 GPa) [1]. Most of the samples have a fusion crust ranging from ~0.1-1mm thick, and roughly a third of the samples were composed of a dark fine-grained impact melt with chondrule fragments which were targeted for chronometry. A Pb-Pb age obtained by [2] of a shock-darkened and potentially melted sample of Chelyabinsk is reported as 4538.3 +/- 2.1 Ma, while a U-Pb study [3] gave an upper concordia intercept of 4454 +/- 67 Ma and a lower intercept of 585 +/- 390. Galimov et al. 2013 [1] suggest the Sm-Nd system records a recent impact event [~290 Ma] that may represent separation from the parent body, while the Rb-Sr isotopic system is disturbed and does not give any definitive isochron. In order to better understand its history, we have performed 40Ar-39Ar analysis on multiple splits of two Chelyabinsk samples; clast- rich MB020f,2 and melt-rich MB020f,5. The term "clast-rich" lithology is meant to indicate a mechanical mixture of highly shock-darkened and less shocked components, both with some shock melt veining
    corecore