5,870 research outputs found
A simple analytic model for astrophysical S-factors
We propose a physically transparent analytic model of astrophysical S-factors
as a function of a center-of-mass energy E of colliding nuclei (below and above
the Coulomb barrier) for non-resonant fusion reactions. For any given reaction,
the S(E)-model contains four parameters [two of which approximate the barrier
potential, U(r)]. They are easily interpolated along many reactions involving
isotopes of the same elements; they give accurate practical expressions for
S(E) with only several input parameters for many reactions. The model
reproduces the suppression of S(E) at low energies (of astrophysical
importance) due to the shape of the low-r wing of U(r). The model can be used
to reconstruct U(r) from computed or measured S(E). For illustration, we
parameterize our recent calculations of S(E) (using the Sao Paulo potential and
the barrier penetration formalism) for 946 reactions involving stable and
unstable isotopes of C, O, Ne, and Mg (with 9 parameters for all reactions
involving many isotopes of the same elements, e.g., C+O). In addition, we
analyze astrophysically important 12C+12C reaction, compare theoretical models
with experimental data, and discuss the problem of interpolating reliably known
S(E) values to low energies (E <= 2-3 MeV).Comment: 13 pages, 5 figures, Phys. Rev. C, accepte
Clear air turbulence
Research on forecasting, detection, and incidents of clear air turbulenc
Large collection of astrophysical S-factors and its compact representation
Numerous nuclear reactions in the crust of accreting neutron stars are
strongly affected by dense plasma environment. Simulations of superbursts, deep
crustal heating and other nuclear burning phenomena in neutron stars require
astrophysical S-factors for these reactions (as a function of center-of-mass
energy E of colliding nuclei). A large database of S-factors is created for
about 5000 non-resonant fusion reactions involving stable and unstable isotopes
of Be, B, C, N, O, F, Ne, Na, Mg, and Si. It extends the previous database of
about 1000 reactions involving isotopes of C, O, Ne, and Mg. The calculations
are performed using the Sao Paulo potential and the barrier penetration
formalism. All calculated S-data are parameterized by an analytic model for
S(E) proposed before [Phys. Rev. C 82, 044609 (2010)] and further elaborated
here. For a given reaction, the present S(E)-model contains three parameters.
These parameters are easily interpolated along reactions involving isotopes of
the same elements with only seven input parameters, giving an ultracompact,
accurate, simple, and uniform database. The S(E) approximation can also be used
to estimate theoretical uncertainties of S(E) and nuclear reaction rates in
dense matter, as illustrated for the case of the 34Ne+34Ne reaction in the
inner crust of an accreting neutron star.Comment: 13 pages, 2 figures, Phys. Rev. C, accepte
Design concepts for bioreactors in space
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats
Design concepts for bioreactors in space
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources, especially in the context of closed ecological life support systems (CELSS) in space habitats. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecraft, space stations and other extra-terrestrial habitats
Rain: Relaxations in the sky
We demonstrate how, from the point of view of energy flow through an open
system, rain is analogous to many other relaxational processes in Nature such
as earthquakes. By identifying rain events as the basic entities of the
phenomenon, we show that the number density of rain events per year is
inversely proportional to the released water column raised to the power 1.4.
This is the rain-equivalent of the Gutenberg-Richter law for earthquakes. The
event durations and the waiting times between events are also characterised by
scaling regions, where no typical time scale exists. The Hurst exponent of the
rain intensity signal . It is valid in the temporal range from
minutes up to the full duration of the signal of half a year. All of our
findings are consistent with the concept of self-organised criticality, which
refers to the tendency of slowly driven non-equilibrium systems towards a state
of scale free behaviour.Comment: 9 pages, 8 figures, submitted to PR
The Maine State House: A Brief History and Guide
This is a building for all the people of Maine, which also welcomes visitors to the state who wish to share in this expression of our heritage.https://digitalcommons.usm.maine.edu/mhpc-docs/1005/thumbnail.jp
Crocodiles as dinosaurs: Behavioural thermoregulation in very large ectotherms leads to high and stable body temperatures
Empirical field data describing daily and seasonal cycles in body temperature (Tb) of free-ranging Crocodylus porosus (32-1010 kg) can be predicted by a mathematical analysis. The analysis provides a mechanistic explanation for the decreased amplitude of daily cycles in Tb and the increase in 'average' Tb with increasing mass. Assessments of 'average' daily Tb were made by dividing the integral of the difference between measured values of Tb and minimum operative temperature by the period of integration, to yield a thermal index expressing relative 'warmth' of crocodiles. The average daily Tb of a 1010 kg crocodile was 3.7 degrees C warmer than that of a 42 kg individual in summer and 1.9 degreesC warmer than that of a 32 kg individual in winter. The success of this mathematical approach confirms that crocodiles are simple ectotherms and that there is unlikely to be a significant contribution to their thermal biology from physiological mechanisms. Behaviour, however, is very important even in large individuals. Crocodiles in the field typically move daily between land and water in cycles that vary seasonally. We predicted Tb for the reverse of these behavioural cycles, which more than doubled seasonal fluctuations in Tb compared with the observed fluctuations. We were also able to predict the Tb of very large, dinosaur-sized crocodiles in a similar climate to that at our study site. A 10 000 kg 'crocodile', for example, would be expected to have a Tb of 31 degreesC in winter, varying by less than 0.1 degrees C during a day when operative temperatures varied by nearly 20 degrees C, from 20 to 38 degrees C. The study confirms that, in low latitudes at least, large dinosaurs must have had an essentially high and stable value of Tb, without any need for endothermy. Also, access to shade or water must have been crucial for the survival of large dinosaurs at low latitudes. Furthermore, the finding of increasing 'average' Tb as ectotherms grow larger may have implications for the metabolic rates of very large reptiles, because the Q10 effect could counteract the downscaling of metabolic rate with mass, an effect that seems not to have been recognised previously
Influence of Pocket Gopher Mounds on Nonnative Plant Establishment in a Shrubsteppe Ecosystem
Soil disturbances across a wide range of spatial scales have been found to promote the establishment of invasive plant species. This study addresses whether mounds built by northern pocket gophers (Thomomys talpoides) in the shrubsteppe environment of north central Washington are facilitating plant invasions into native-dominated fields. Research was conducted in native-dominated plant communities adjacent to ex-arable, nonnative-dominated fields. To determine the effect of mounds on plant growth, we recorded new establishment and persistence of all plant species over 2 growing seasons on 10–19 mound and intermound areas in 10 fields. Nonnative plant establishment was not affected by mounds, but native plant establishment, particularly of the dominant native Pseudoroegneria spicata was lower on mounds than on intermounds. Early in the growing season, mounds had reduced soil moisture, bulk density, soil strength, N mineralization rates, and total N and C concentrations, and similar extractable NO3 – concentrations relative to intermound soils. Our results did not suggest that soil disturbance improved nonnative growth resulting in competitive suppression of natives; rather, our results suggested that low soil moisture and slow N mineralization rates on mounds in this ecosystem present relatively stressful conditions for native plant growth
Application of an Ultralight Aircraft to Aerial Surveys of Kangaroos on Grazing Properties
A Drifter ultralight aircraft was used as a platform for line-transect aerial surveys of three species of kangaroo in the sheep rangelands south-east of Blackall and north of Longreach in central-western Queensland in winter 1993 and 1994. Favourable comparisons between the results of ultralight surveys and those made from a helicopter flying the same transects and foot surveys along another set of transects, all within a few days of the ultralight survey, confirmed the expectation we had that an ultralight would be a satisfactory and much cheaper vehicle for conducting aerial surveys of kangaroos. The comparisons are even more favourable when data for the three species surveyed are combined, pointing to a problem in species identification and underlining the importance of using only experienced observers for aerial survey of kangaroos, whatever the platform. The use of an ultralight aircraft could have particular value where a comparatively small area, such as an individual sheep or cattle property, is under consideration. In this paper, we present the numerical comparisons, along with an evaluation of the practicability of using this type of aircraft. We also describe a possible future scenario in which an accreditation process could see approved kangaroo surveyors undertaking property assessments by ultralight, under contract to graziers or other interested parties
- …