5,879 research outputs found

    Large collection of astrophysical S-factors and its compact representation

    Full text link
    Numerous nuclear reactions in the crust of accreting neutron stars are strongly affected by dense plasma environment. Simulations of superbursts, deep crustal heating and other nuclear burning phenomena in neutron stars require astrophysical S-factors for these reactions (as a function of center-of-mass energy E of colliding nuclei). A large database of S-factors is created for about 5000 non-resonant fusion reactions involving stable and unstable isotopes of Be, B, C, N, O, F, Ne, Na, Mg, and Si. It extends the previous database of about 1000 reactions involving isotopes of C, O, Ne, and Mg. The calculations are performed using the Sao Paulo potential and the barrier penetration formalism. All calculated S-data are parameterized by an analytic model for S(E) proposed before [Phys. Rev. C 82, 044609 (2010)] and further elaborated here. For a given reaction, the present S(E)-model contains three parameters. These parameters are easily interpolated along reactions involving isotopes of the same elements with only seven input parameters, giving an ultracompact, accurate, simple, and uniform database. The S(E) approximation can also be used to estimate theoretical uncertainties of S(E) and nuclear reaction rates in dense matter, as illustrated for the case of the 34Ne+34Ne reaction in the inner crust of an accreting neutron star.Comment: 13 pages, 2 figures, Phys. Rev. C, accepte

    Muon spin rotation studies of niobium for superconducting RF applications

    Full text link
    In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small grain 1.5 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. Results of the muSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing (BCP) performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR. The muSR line width observed in ZF-muSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. An upper bound for the upper critical field Hc2 of these cutouts is found.Comment: 20 pages, 14 figure

    Should Soft Tissue Sarcomas be Treated at a Specialist Centre?

    Get PDF
    Objective. We have investigated whether there is evidence that patients with soft tissue sarcomas do better if treated in a specialist centre compared with district general hospitals

    The Two-Dimensional S=1 Quantum Heisenberg Antiferromagnet at Finite Temperatures

    Full text link
    The temperature dependence of the correlation length, susceptibilities and the magnetic structure factor of the two-dimensional spin-1 square lattice quantum Heisenberg antiferromagnet are computed by the quantum Monte Carlo loop algorithm (QMC). In the experimentally relevant temperature regime the theoretically predicted asymptotic low temperature behavior is found to be not valid. The QMC results however, agree reasonably well with the experimental measurements of La2NiO4 even without considering anisotropies in the exchange interactions.Comment: 4 Pages, 1 table, 4 figure

    Duality, thermodynamics, and the linear programming problem in constraint-based models of metabolism

    Full text link
    It is shown that the dual to the linear programming problem that arises in constraint-based models of metabolism can be given a thermodynamic interpretation in which the shadow prices are chemical potential analogues, and the objective is to minimise free energy consumption given a free energy drain corresponding to growth. The interpretation is distinct from conventional non-equilibrium thermodynamics, although it does satisfy a minimum entropy production principle. It can be used to motivate extensions of constraint-based modelling, for example to microbial ecosystems.Comment: 4 pages, 2 figures, 1 table, RevTeX 4, final accepted versio

    Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector.

    Get PDF
    One of the major hurdles for the development of gene therapy for Fanconi anemia (FA) is the increased sensitivity of FA stem cells to free radical-induced DNA damage during ex vivo culture and manipulation. To minimize this damage, we have developed a brief transduction procedure for lentivirus vector-mediated transduction of hematopoietic progenitor cells from patients with Fanconi anemia complementation group A (FANCA). The lentiviral vector FancA-sW contains the phosphoglycerate kinase promoter, the FANCA cDNA, and a synthetic, safety-modified woodchuck post transcriptional regulatory element (sW). Bone marrow mononuclear cells or purified CD34(+) cells from patients with FANCA were transduced in an overnight culture on recombinant fibronectin peptide CH-296, in low (5%) oxygen, with the reducing agent, N-acetyl-L-cysteine (NAC), and a combination of growth factors, granulocyte colony-stimulating factor (G-CSF), Flt3 ligand, stem cell factor, and thrombopoietin. Transduced cells plated in methylcellulose in hypoxia with NAC showed increased colony formation compared with 21% oxygen without NAC (P<0.03), showed increased resistance to mitomycin C compared with green fluorescent protein (GFP) vector-transduced controls (P<0.007), and increased survival. Thus, combining short transduction and reducing oxidative stress may enhance the viability and engraftment of gene-corrected cells in patients with FANCA

    Kosterlitz-Thouless Universality in a Fermionic System

    Full text link
    A new extension of the attractive Hubbard model is constructed to study the critical behavior near a finite temperature superconducting phase transition in two dimensions using the recently developed meron-cluster algorithm. Unlike previous calculations in the attractive Hubbard model which were limited to small lattices, the new algorithm is used to study the critical behavior on lattices as large as 128×128128\times 128. These precise results for the first time show that a fermionic system can undergo a finite temperature phase transition whose critical behavior is well described by the predictions of Kosterlitz and Thouless almost three decades ago. In particular it is confirmed that the spatial winding number susceptibility obeys the well known predictions of finite size scaling for T<TcT<T_c and up to logarithmic corrections the pair susceptibility scales as L2−ηL^{2-\eta} at large volumes with 0≤η≤0.250\leq\eta\leq 0.25 for 0≤T≤Tc0\leq T\leq T_c.Comment: Revtex format; 4 pages, 2 figure

    QCD as a Quantum Link Model

    Get PDF
    QCD is constructed as a lattice gauge theory in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. The resulting quantum link model for QCD is formulated with a fifth Euclidean dimension, whose extent resembles the inverse gauge coupling of the resulting four-dimensional theory after dimensional reduction. The inclusion of quarks is natural in Shamir's variant of Kaplan's fermion method, which does not require fine-tuning to approach the chiral limit. A rishon representation in terms of fermionic constituents of the gluons is derived and the quantum link Hamiltonian for QCD with a U(N) gauge symmetry is expressed in terms of glueball, meson and constituent quark operators. The new formulation of QCD is promising both from an analytic and from a computational point of view.Comment: 27 pages, including three figures. ordinary LaTeX; Submitted to Nucl. Phys.

    Heisenberg antiferromagnet on the square lattice for S>=1

    Full text link
    Theoretical predictions of a semiclassical method - the pure-quantum self-consistent harmonic approximation - for the correlation length and staggered susceptibility of the Heisenberg antiferromagnet on the square lattice (2DQHAF) agree very well with recent quantum Monte Carlo data for S=1, as well as with experimental data for the S=5/2 compounds Rb2MnF4 and KFeF4. The theory is parameter-free and can be used to estimate the exchange coupling: for KFeF4 we find J=2.33 +- 0.33 meV, matching with previous determinations. On this basis, the adequacy of the quantum nonlinear sigma model approach in describing the 2DQHAF when S>=1 is discussed.Comment: 4 pages RevTeX file with 5 figures included by psfi
    • …
    corecore