4,978 research outputs found

    Interplanetary magnetic fields as a cause of comet tails

    Get PDF
    Interplanetary magnetic fields as cause of comet tail

    Clear air turbulence

    Get PDF
    Research on forecasting, detection, and incidents of clear air turbulenc

    Large collection of astrophysical S-factors and its compact representation

    Full text link
    Numerous nuclear reactions in the crust of accreting neutron stars are strongly affected by dense plasma environment. Simulations of superbursts, deep crustal heating and other nuclear burning phenomena in neutron stars require astrophysical S-factors for these reactions (as a function of center-of-mass energy E of colliding nuclei). A large database of S-factors is created for about 5000 non-resonant fusion reactions involving stable and unstable isotopes of Be, B, C, N, O, F, Ne, Na, Mg, and Si. It extends the previous database of about 1000 reactions involving isotopes of C, O, Ne, and Mg. The calculations are performed using the Sao Paulo potential and the barrier penetration formalism. All calculated S-data are parameterized by an analytic model for S(E) proposed before [Phys. Rev. C 82, 044609 (2010)] and further elaborated here. For a given reaction, the present S(E)-model contains three parameters. These parameters are easily interpolated along reactions involving isotopes of the same elements with only seven input parameters, giving an ultracompact, accurate, simple, and uniform database. The S(E) approximation can also be used to estimate theoretical uncertainties of S(E) and nuclear reaction rates in dense matter, as illustrated for the case of the 34Ne+34Ne reaction in the inner crust of an accreting neutron star.Comment: 13 pages, 2 figures, Phys. Rev. C, accepte

    Rain: Relaxations in the sky

    Full text link
    We demonstrate how, from the point of view of energy flow through an open system, rain is analogous to many other relaxational processes in Nature such as earthquakes. By identifying rain events as the basic entities of the phenomenon, we show that the number density of rain events per year is inversely proportional to the released water column raised to the power 1.4. This is the rain-equivalent of the Gutenberg-Richter law for earthquakes. The event durations and the waiting times between events are also characterised by scaling regions, where no typical time scale exists. The Hurst exponent of the rain intensity signal H=0.76>0.5H = 0.76 > 0.5. It is valid in the temporal range from minutes up to the full duration of the signal of half a year. All of our findings are consistent with the concept of self-organised criticality, which refers to the tendency of slowly driven non-equilibrium systems towards a state of scale free behaviour.Comment: 9 pages, 8 figures, submitted to PR

    Limitations of the Pilot in Applying Forces to Airplane Controls

    Get PDF
    Measurements were made to determine the relative maximum forces a pilot can exert on the controls of an airplane with the view of obtaining systematic data upon which to base the location of controls within the cockpit and the design of the control surfaces. A cockpit model of generous proportions, capable of being rotated to any attitude, was built with the location of the control stick and rudder pedals adjustable over a wide range of positions with respect to the seat. Besides measurements of maximum forces obtainable with various control locations and with the pilot in several attitudes, estimates of forces within the range normally encountered in flight were made to gain an indication of the accuracy of estimating control forces. The maximum aileron forces measured were of the order of 90 pounds, maximum elevator 200 pounds, and maximum rudder 450 pounds. The average forces applied with the controls in the neutral position for the various cockpit attitudes were of the order of 35, 95, and 400 pounds, respectively, for the ailerons, elevators, and rudder

    Characterisation of a PVCP based tissue-mimicking phantom for Quantitative Photoacoustic Imaging

    Get PDF
    Photoacoustic imaging can provide high resolution images of tissue structure, pathology and function. As these images can be obtained at multiple wavelengths, quantitatively accurate, spatially resolved, estimates for chromophore concentration, for example, may be obtainable. Such a capability would find a wide range of clinical and pre-clinical applications. However, despite a growing body of theoretical papers on how this might be achieved, there is a noticeable lack of studies providing validated evidence that it can be achieved experimentally, either in vitro or in vivo. Well-defined, versatile and stable phantom materials are essential to assess the accuracy, robustness and applicability of multispectral Quantitative Photoacoustic Imaging (qPAI) algorithms in experimental scenarios. This study assesses the potential of polyvinyl chloride plastisol (PVCP) as a phantom material for qPAI, building on previous work that focused on using PVCP for quality control. Parameters that might be controlled or tuned to assess the performance of qPAI algorithms were studied: broadband acoustic properties, multiwavelength optical properties with added absorbers and scatterers, and photoacoustic efficiency. The optical and acoustic properties of PVCP can be tuned to be broadly representative of soft tissue. The Grüneisen parameter is larger than expected in tissue, which is an advantage as it increases the signal-to-noise ratio of the photoacoustic measurements. Interestingly, when the absorption was altered by adding absorbers, the absorption spectra measured using high peak power nanosecond-pulsed sources (typical in photoacoustics) were repeatably different from the ones measured using the low power source in the spectrophotometer, indicative of photochemical reactions taking place

    The cost-effectiveness of high dose chemotherapy in the treatment of relapsed Hodgkin's disease and non-Hodgkin's lymphoma

    Get PDF
    As part of an NHS Executive Trent regional initiative we considered the role and cost-effectiveness of high dose chemotherapy in the treatment of relapsed Hodgkin's disease and non-Hodgkin's lymphoma. The key trials and case series show an additional patient benefit of 0.8–1.1 life years over standard chemotherapy. We estimate incremental cost per life year gained of £12 800–£17 600, which reduces further if long-term benefits are considered. High dose chemotherapy in these conditions is both life-saving and cost-effective. © 2000 Cancer Research Campaig

    Sensitivity of quantitative photoacoustic tomography inversion schemes to experimental uncertainty

    Get PDF
    The ability to accurately quantify chromophore concentration from photoacoustic images would have a major impact on pre-clinical and clinical imaging. Recent years have seen significant advances in the theoretical understanding of quantitative photoacoustic imaging and in the development of model-based inversion strategies that overcome issues such as non-uniqueness and non-linearity. Nevertheless, their full in vivo implementation has not successfully been achieved, partially because experimental uncertainties complicate the transition. In this study, a sensitivity analysis is performed to assess the impact on accuracy of having uncertainty in critical experimental parameters such as scattering, beam diameter, beam position and calibration factor. This study was performed using two virtual phantoms, at one illumination and four optical wavelengths. The model-based inversion was applied in 3 variants - one just inverting for chromophores and two others further inverting for either a scaling factor or the scatterer concentration. The performance of these model-based inversions is also compared to linear unmixing strategies - with and without fluence correction. The results show that experimental uncertainties in a priori fixed parameters - especially calibration factor and scatterer concentration - significantly affect accuracy of model-based inversions and therefore measures to ameliorate this uncertainty should be considered. Including a scaling parameter in the inversion appears to improve quantification estimates. Furthermore, even with realistic levels of experimental uncertainty in model-based input parameters, they outperform linear unmixing approaches. If parameter uncertainty is large and has significant impact on accuracy, the parameter can be included as an unknown in model-based schemes

    QCD as a Quantum Link Model

    Get PDF
    QCD is constructed as a lattice gauge theory in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. The resulting quantum link model for QCD is formulated with a fifth Euclidean dimension, whose extent resembles the inverse gauge coupling of the resulting four-dimensional theory after dimensional reduction. The inclusion of quarks is natural in Shamir's variant of Kaplan's fermion method, which does not require fine-tuning to approach the chiral limit. A rishon representation in terms of fermionic constituents of the gluons is derived and the quantum link Hamiltonian for QCD with a U(N) gauge symmetry is expressed in terms of glueball, meson and constituent quark operators. The new formulation of QCD is promising both from an analytic and from a computational point of view.Comment: 27 pages, including three figures. ordinary LaTeX; Submitted to Nucl. Phys.
    • …
    corecore