11 research outputs found

    The Adiabatic Instability on Cosmology's Dark Side

    Full text link
    We consider theories with a nontrivial coupling between the matter and dark energy sectors. We describe a small scale instability that can occur in such models when the coupling is strong compared to gravity, generalizing and correcting earlier treatments. The instability is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid. Our results are general, and applicable to a wide class of coupled models and provide a powerful, redshift-dependent tool, complementary to other constraints, with which to rule many of them out. A detailed analysis and applications to a range of models are presented in a longer companion paper.Comment: 4 pages, 1 figur

    The accelerating universe and a limiting curvature proposal

    Get PDF
    We consider the hypothesis of a limiting minimal curvature in gravity as a way to construct a class of theories exhibiting late-time cosmic acceleration. Guided by the minimal curvature conjecture (MCC) we are naturally lead to a set of scalar tensor theories in which the scalar is non-minimally coupled both to gravity and to the matter Lagrangian. The model is compared to the Lambda Cold Dark Matter concordance model and to the observational data using the gold SNeIa sample of Riess et. al. (2004). An excellent fit to the data is achieved. We present a toy model designed to demonstrate that such a new, possibly fundamental, principle may be responsible for the recent period of cosmological acceleration. Observational constraints remain to be imposed on these models.Comment: 22 pages, 7 figures; revised version to appear in JCAP; references adde

    Primordial Neutrinos, Cosmological Perturbations in Interacting Dark-Energy Model: CMB and LSS

    Full text link
    We present cosmological perturbation theory in neutrinos probe interacting dark-energy models, and calculate cosmic microwave background anisotropies and matter power spectrum. In these models, the evolution of the mass of neutrinos is determined by the quintessence scalar field, which is responsible for the cosmic acceleration today. We consider several types of scalar field potentials and put constraints on the coupling parameter between neutrinos and dark energy. Assuming the flatness of the universe, the constraint we can derive from the current observation is ∑mν<0.87eV\sum m_{\nu} < 0.87 eV at the 95 % confidence level for the sum over three species of neutrinos. We also discuss on the stability issue of the our model and on the impact of the scattering term in Boltzmann equation from the mass-varying neutrinos.Comment: 26 pages Revtex, 11 figures, Add new contents and reference

    Correspondence between kinematical backreaction and scalar field cosmologies - the `morphon field'

    Get PDF
    Spatially averaged inhomogeneous cosmologies in classical general relativity can be written in the form of effective Friedmann equations with sources that include backreaction terms. In this paper we propose to describe these backreaction terms with the help of a homogeneous scalar field evolving in a potential; we call it the `morphon field'. This new field links classical inhomogeneous cosmologies to scalar field cosmologies, allowing to reinterpret, e.g., quintessence scenarios by routing the physical origin of the scalar field source to inhomogeneities in the Universe. We investigate a one-parameter family of scaling solutions to the backreaction problem. Subcases of these solutions (all without an assumed cosmological constant) include scale-dependent models with Friedmannian kinematics that can mimic the presence of a cosmological constant or a time-dependent cosmological term. We explicitly reconstruct the scalar field potential for the scaling solutions, and discuss those cases that provide a solution to the Dark Energy and coincidence problems. In this approach, Dark Energy emerges from morphon fields, a mechanism that can be understood through the proposed correspondence: the averaged cosmology is characterized by a weak decay (quintessence) or growth (phantom quintessence) of kinematical fluctuations, fed by `curvature energy' that is stored in the averaged 3-Ricci curvature. We find that the late-time trajectories of those models approach attractors that lie in the future of a state that is predicted by observational constraints.Comment: 36 pages and 6 Figures, matches published version in Class.Quant.Gra

    On globally static and stationary cosmologies with or without a cosmological constant and the Dark Energy problem

    Full text link
    In the framework of spatially averaged inhomogeneous cosmologies in classical General Relativity, effective Einstein equations govern the regional and the global dynamics of averaged scalar variables of cosmological models. A particular solution may be characterized by a cosmic equation of state. In this paper it is pointed out that a globally static averaged dust model is conceivable without employing a compensating cosmological constant. Much in the spirit of Einstein's original model we discuss consequences for the global, but also for the regional properties of this cosmology. We then consider the wider class of globally stationary cosmologies that are conceivable in the presented framework. All these models are based on exact solutions of the averaged Einstein equations and provide examples of cosmologies in an out-of-equilibrium state, which we characterize by an information-theoretical measure. It is shown that such cosmologies preserve high-magnitude kinematical fluctuations and so tend to maintain their global properties. The same is true for a Λ−\Lambda-driven cosmos in such a state despite of exponential expansion. We outline relations to inflationary scenarios, and put the Dark Energy problem into perspective. Here, it is argued, on the grounds of the discussed cosmologies, that a classical explanation of Dark Energy through backreaction effects is theoretically conceivable, if the matter-dominated Universe emerged from a non-perturbative state in the vicinity of the stationary solution. We also discuss a number of caveats that furnish strong counter arguments in the framework of structure formation in a perturbed Friedmannian model.Comment: 33 pages, matches published version in Class. Quant. Gra

    Effects of the interaction between dark energy and dark matter on cosmological parameters

    Full text link
    We examine the effects of possible phenomenological interactions between dark energy and dark matter on cosmological parameters and their efficiency in solving the coincidence problem. We work with two simple parameterizations of the dynamical dark energy equation of state and the constant dark energy equation of state. Using observational data coming from the new 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, we perform a statistical joint analysis of different forms of phenomenological interactions between dark energy and dark matter.Comment: revised version, accepted for publication in JCA

    The State of the Dark Energy Equation of State

    Get PDF
    By combining data from seven cosmic microwave background experiments (including the latest WMAP results) with large scale structure data, the Hubble parameter measurement from the Hubble Space Telescope and luminosity measurements of Type Ia supernovae we demonstrate the bounds on the dark energy equation of state wQw_Q to be −1.38<wQ<−0.82-1.38< w_Q <-0.82 at the 95% confidence level. Although our limit on wQw_Q is improved with respect to previous analyses, cosmological data does not rule out the possibility that the equation of state parameter wQw_Q of the dark energy QQ is less than -1. We present a tracking model that ensures wQ≤−1w_Q \le -1 at recent times and discuss the observational consequences.Comment: 7 pages, 4 figures, added a referenc

    Cheng-Weyl Vector Field and its Cosmological Application

    Full text link
    Weyl's idea on scale invariance was resurrected by Cheng in 1988. The requirement of local scale invariance leads to a completely new vector field, which we call the ``Cheng-Weyl vector field''. The Cheng-Weyl vector field couples only to a scalar field and the gravitational field naturally. It does not interact with other known matters in the standard model of particle physics. In the present work, the (generalized) Cheng-Weyl vector field coupled with the scalar field and its cosmological application are investigated. A mixture of the scalar field and a so-called ``cosmic triad'' of three mutually orthogonal Cheng-Weyl vector fields is regarded as the dark energy in the universe. The cosmological evolution of this ``mixed'' dark energy model is studied. We find that the effective equation-of-state parameter of the dark energy can cross the phantom divide wde=−1w_{de}=-1 in some cases; the first and second cosmological coincidence problems can be alleviated at the same time in this model.Comment: 16 pages, revtex4; v2: references added; v3: discussions added, to appear in JCAP; v4: published versio
    corecore