1,003 research outputs found

    Creep feeding beef calves

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Factors Affecting the Association of Single- and Double-Stranded RNAs with Montmorillonite Nanoclays

    Get PDF
    Montmorillonite (MMT) nanoclays exist as single and stacked sheet-like structures with large surface areas that can form stable associations with many naturally occurring biomolecules, including nucleic acids. They have been utilized successfully as vehicles for delivery of both drugs and genes into cells. Most previous studies have focused on interactions of MMT with DNA. In the current study, we have investigated the binding of small RNAs similar to those used for RNA interference (RNAi) therapy to two major forms of the clay, Na-MMT and Ca-MMT. Association of both forms of MMT with several double-stranded RNAs (dsRNAs), including 25mers, 54mers and cloverleaf-shaped transfer RNAs, was weak and increased only slightly after addition of Mg2+ ions to the binding reactions. By contrast, ssRNA 25mers and 54mers bound poorly to Na-MMT but interacted strongly with Ca-MMT. The weak binding of ssRNAs to Na-MMT could be strongly enhanced by addition of Mg2+ ions. The strength of MMT-ssRNA interactions was also examined using inorganic anion competition and displacement assays, as well as electrophoretic mobility shift assays (EMSAs). The aggregate results point to a cation-bridging mechanism for binding of ssRNAs, but not dsRNAs, in the presence of divalent metal cations

    Geometric CP Violation with Extra Dimensions

    Get PDF
    We discuss how CP symmetry can be broken geometrically through orbifold projections in hidden extra dimensions in the context of D-brane models for particle unifications. We present a few toy models to illustrate the idea and suggest ways to incorporate this technique in the context of realistic models.Comment: 6 pages, one figure; references updated and a new model adde

    On the Hadronic Beam Model for Gamma-ray Production in Blazars

    Full text link
    We consider, herein, a model for gamma-ray production in blazars in which a relativistic, highly-collimated electron-proton beam interacts with a dense, compact cloud as the jet propagates through the broad and perhaps narrow line regions (BLR and NLR) of active galactic nuclei (AGN). During the propagation of the beam through the cloud, the process of excitation of plasma waves becomes an important energy loss mechanism, especially for mildly relativistic proton beams. We compute the expected spectra of gamma-rays from the decay of neutral pions produced in hadronic collisions of the beam with the cloud, taking into account collisionless losses of the electron-proton beam. This model may explain the X-ray and TeV gamma-ray (both low and high emission states) of Mrk 421 as a result of synchrotron emission of secondary pairs from the decay of charged pions and gamma-ray emission from the decay of neutral pions for the plausible cloud parameters. However clouds can not be too hot and too dense. Otherwise the TeV gamma-rays can be attenuated by the bremsstrahlung radiation in the cloud and the secondary pairs are not able to efficiently produce synchrotron flares because of the dominant role of inverse Compton scattering. The non-variable γ\gamma-ray emission observed from Mrk 421 in the EGRET energy range cannot be described by the γ\gamma-rays from decay of neutral pions provided that the spectrum of protons in the beam is well described by a simple power law. These γ\gamma-rays might only be produced by secondary pairs scattering the soft non-variable X-rays which might originate in the inner part of the accretion disk.Comment: 14 pages,3 figures, latex, submitted to Ap

    Constraints From bsγb \to s\gamma on the Left-Right Symmetric Model

    Full text link
    Recent results from the CLEO Collaboration on both inclusive and exclusive radiative BB decays are used to constrain the parameter space of two versions of the Left-Right Symmetric Model. In the first scenario, when the left- and right-handed Cabibbo-Kobayashi-Maskawa mixing matrices are equal, VL=VRV_L=V_R, the radiative BB decay data is shown to lead to strong bounds on the WLWRW_L-W_R mixing angle that are quite insensitive to either the top quark or WRW_R mass. The second scenario examined is that of Gronau and Wakaizumi wherein bb-quark decays proceed only via right-handed currents and VLV_L and VRV_R are quite distinct. For this model, the combined constraints from Tevatron WRW_R searches, the BB lifetime, and radiative BB decays lead to a very highly restricted allowed range for the WLWRW_L-W_R mixing angle.Comment: 16 pages, 9 figures(not included), LaTex, SLAC-PUB-642

    Ubiquitous CP violation in a top-inspired left-right model

    Full text link
    We explore CP violation in a Left-Right Model that reproduces the quark mass and CKM rotation angle hierarchies in a relatively natural way by fixing the bidoublet Higgs VEVs to be in the ratio m_b:m_t. Our model is quite general and allows for CP to be broken by both the Higgs VEVs and the Yukawa couplings. Despite this generality, CP violation may be parameterized in terms of two basic phases. A very interesting feature of the model is that the mixing angles in the right-handed sector are found to be equal to their left-handed counterparts to a very good approximation. Furthermore, the right-handed analogue of the usual CKM phase delta_L is found to satisfy the relation delta_R \approx delta_L. The parameter space of the model is explored by using an adaptive Monte Carlo algorithm and the allowed regions in parameter space are determined by enforcing experimental constraints from the K and B systems. This method of solution allows us to evaluate the left- and right-handed CKM matrices numerically for various combinations of the two fundamental CP-odd phases in the model. We find that all experimental constraints may be satisfied with right-handed W and Flavour Changing Neutral Higgs masses as low as about 2 TeV and 7 TeV, respectively.Comment: 37 pages, 13 figure

    Charge asymmetry ratio as a probe of quark flavour couplings of resonant particles at the LHC

    Full text link
    We show how a precise knowledge of parton distribution functions, in particular those of the u and d quarks, can be used to constrain a certain class of New Physics models in which new heavy charged resonances couple to quarks and leptons. We illustrate the method by considering a left-right symmetric model with a W' from a SU(2)_R gauge sector produced in quark-antiquark annihilation and decaying into a charged lepton and a heavy Majorana neutrino. We discuss a number of quark and lepton mixing scenarios, and simulate both signals and backgrounds in order to determine the size of the expected charge asymmetry. We show that various quark-W' mixing scenarios can indeed be constrained by charge asymmetry measurements at the LHC, particularly at 14 TeV centre of mass energy.Comment: 14 pages, 3 figure
    corecore