14 research outputs found

    Molecular characterisation and expression analysis of interferon gamma in response to natural chlamydia infection in the koala, phascolarctos cinereus \ud

    No full text
    Interferon gamma (IFNγ) is a key Th1 cytokine, with a principal role in the immune response against intracellular organisms such as Chlamydia. Along with being responsible for significant morbidity in human populations, Chlamydia is also responsible for wide spread infection and disease in many animal hosts, with reports that many Australian koala subpopulations are endemically infected. An understanding of the role played by IFNγ in koala chlamydial diseases is important for the establishment of better prophylactic and therapeutic approaches against chlamydial infection in this host. A limited number of IFNγ sequences have been published from marsupials and no immune reagents to measure expression have been developed. Through preliminary analysis of the koala transcriptome, we have identified the full coding sequence of the koala IFNγ gene. Transcripts were identified in spleen and lymph node tissue samples. Phylogenetic analysis demonstrated that koala IFNγ is closely related to other marsupial IFNγ sequences and more distantly related to eutherian mammals. To begin to characterise the role of this important cytokine in the koala's response to chlamydial infection, we developed a quantitative real time PCR assay and applied it to a small cohort of koalas with and without active chlamydial disease, revealing significant differences in expression patterns between the groups. Description of the IFNγ sequence from the koala will not only assist in understanding this species' response to its most important pathogen but will also provide further insight into the evolution of the marsupial immune syste

    Dendritic cells from Peyer's patch and spleen induce different T helper cell responses

    No full text
    The role of antigen-presenting cells (APC) in regulating the balance of T helper type 1 (Th1) and T helper 2 (Th2) responses and cytokine production is unclear. Dendritic cells (DC), the most potent APC for naive T cell activation, were found to regulate Th1 and Th2 cytokine profiles in a manner dependent on their tissue of origin. Using whole tissues or purified cell mixtures, spleen (systemic) DC were found to induce mainly Th1 cytokines, and Peyer's patch (mucosal) DC were found to induce predominantly Th2 cytokines. Spleen DC induced high levels of interferon-γ (IFN-γ) or interleukin-2 (IL- 2) or both, and Peyer's patch DC induced IL-4 or IL-6 or both in spleen and Peyer's patch T cells, allogeneic mixed leukocyte reactions, or antigen- specific Th0 clones. These data suggest that the tissue of origin of DC has a significant impact on subsequent T cell development.</p

    Constitutive production of IL-13 promotes early-life Chlamydia respiratory infection and allergic airway disease

    No full text
    Deleterious responses to pathogens during infancy may contribute to infection and associated asthma. Chlamydia respiratory infections in early life are common causes of pneumonia and lead to reduced lung function and asthma. We investigated the role of interleukin-13 (IL-13) in promoting early-life Chlamydia respiratory infection, infection-induced airway hyperresponsiveness (AHR), and severe allergic airway disease (AAD). Infected infant Il13−/− mice had reduced infection, inflammation, and mucus-secreting cell hyperplasia. Surprisingly, infection of wild-type (WT) mice did not increase IL-13 production but reduced IL-13Rα2 decoy receptor levels compared with sham-inoculated controls. Infection of WT but not Il13−/− mice induced persistent AHR. Infection and associated pathology were restored in infected Il13−/− mice by reconstitution with IL-13. Stat6−/− mice were also largely protected. Neutralization of IL-13 during infection prevented subsequent infection-induced severe AAD. Thus, early-life Chlamydia respiratory infection reduces IL-13Rα2 production, which may enhance the effects of constitutive IL-13 and promote more severe infection, persistent AHR, and AAD

    Extrathymic derivation of gut lymphocytes in parabiotic mice

    No full text
    In adult mice, c-kit+ stem cells have recently been found in their liver, intestine and appendix, where extrathymic T cells are generated. A major population of such thymus-independent subsets among intraepithelial lymphocytes is T-cell receptor (TCR)γδ+ CD4− CD8αα+(β−) cells, but the origins of other lymphocyte subsets are still controversial. In this study, we examined what type of lymphocyte subsets were produced in situ by such stem cells in the small intestine, large intestine and appendix. To investigate this subject, we used parabiotic B6.Ly5.1 and B5.Ly5.2 mice which shared the same circulation by day 3. The origin of lymphocytes was identified by anti-Ly5.1 and anti-Ly5.2 monoclonal antibodies in conjunction with immunofluorescence tests. Lymphocytes in Peyer's patches and lamina propria lymphocytes (especially B cells and CD4+ T cells) in the small intestine became a half-and-half mixture of Ly5.1+ and Ly5.2+ cells in each individual of parabiotic pairs of mice by day 14. However, the mixture was low in CD8αα+, CD8αβ+ and γδ T cells in the small and large intestines and in CD3+ CD8+ B220+ cells in the appendix. These cells might be of the in situ origin. When one individual of a pair was irradiated before parabiosis, the mixture of partner cells was accelerated. However, a low-mixture group always continued to show a lower mixture pattern than did a high-mixture group. The present results suggest that extrathymic T cells in the digestive tract may arise from their own pre-existing precursor cells and remain longer at the corresponding sites

    Secretory immunoglobulin A: from mucosal protection to vaccine development.

    No full text
    Immune responses taking place in mucosal tissues are typified by secretory immunoglobulin A (S-IgA) molecules, which are assembled from proteins expressed in two cell lineages. The heavy and light chains as well as the J chain are produced in plasma cells, whereas the secretory component (SC) is associated to the immunoglobulin complex during transcytosis across the epithelial layer. S-IgA antibodies represent the predominant immunoglobulin class in external secretions, and the best defined entity providing specific immune protection for mucosal surfaces by blocking attachment of bacteria and viruses. S-IgA constitutes greater than 80% of all antibodies produced in mucosa-associated lymphoid tissues in humans. The existence of a common mucosal immune system permits immunization on one mucosal surface to induce secretion of antigen-specific S-IgA at distant sites. In addition, S-IgA antibodies not only function in external secretions, but also exert their antimicrobial properties within the epithelial cell during transport across the epithelium. Passive mucosal delivery of monoclonal IgA molecules neutralizes pathogens responsible for gastrointestinal and respiratory infections. Mucosal and systemic immunity can be achieved by orally administered recombinant S-IgA molecules carrying a protective bacterial epitope within the SC polypeptide primary sequence
    corecore