744 research outputs found

    Thermal neutrinos from pre-supernova

    Get PDF
    We would like to discuss prospects for neutrino observations of the core-collapse supernova progenitor during neutrino-cooled stage. We will present new theoretical results on thermal neutrino and antineutrino spectra produced deep inside the pre-supernova core. Three competing processes: pair-, photo and plasma-neutrino production, are taken into account. The results will be used to estimate signal in existing and future neutrino detectors. Chance for supernova prediction is estimated, with possible aid to core-collapse neutrino and gravitational wave detectors in the form of early warning.Comment: 1 page, Contribution to the Proceedings of Neutrino 2006 Conferenc

    Dark Matter Candidates: What Cold, ..and What's Not

    Full text link
    In this brief review of recent theoretical developments associated with the search for dark matter I describe the following: why baryons are now ruled out as dark matter candidates; SUSY WIMPS and signatures in the MSSM and NMSSM why claimed indirect signatures are probably not WIMP related, why axions may be of new interest, how WIMP detection might tell us about the galactic halo, and how theorists are preparing to avoid the next generation of experimental constraints.Comment: 6 pages, Invited Review talk, Neutrino 2006. To appear in Proceeding

    Weak proton capture on 3He

    Get PDF
    The astrophysical S-factor for the proton weak capture on 3He is calculated with correlated-hyperspherical-harmonics bound and continuum wave functions corresponding to realistic Hamiltonians consisting of the Argonne v14 or Argonne v18 two-nucleon and Urbana-VIII or Urbana-IX three-nucleon interactions. The nuclear weak charge and current operators have vector and axial-vector components, that include one- and many-body terms. All possible multipole transitions connecting any of the p 3He S- and P-wave channels to the 4He bound state are considered. The S-factor at a p 3He center-of-mass energy of 10 keV, close to the Gamow-peak energy, is predicted to be 10.1 10^{-20} keV b with the AV18/UIX Hamiltonian, a factor of about 4.5 larger than the value adopted in the standard solar model. The P-wave transitions are found to be important, contributing about 40 % of the calculated S-factor. The energy dependence is rather weak: the AV18/UIX zero-energy S-factor is 9.64 10^{-20} keV b, only 5 % smaller than the 10 keV result quoted above. The model dependence is also found to be weak: the zero-energy S-factor is calculated to be 10.2 10^{-20} keV b with the older AV14/UVIII model, only 6 % larger than the AV18/UIX result. Our best estimate for the S-factor at 10 keV is therefore (10.1 \pm 0.6) 10^{-20} keV b, when the theoretical uncertainty due to the model dependence is included. This value for the calculated S-factor is not as large as determined in fits to the Super-Kamiokande data in which the hep flux normalization is free. However, the precise calculation of the S-factor and the consequent absolute prediction for the hep neutrino flux will allow much greater discrimination among proposed solar neutrino oscillation solutions.Comment: 54 pages RevTex file, 6 PostScript figures, submitted to Phys. Rev.

    Potential for Supernova Neutrino Detection in MiniBooNE

    Full text link
    The MiniBooNE detector at Fermilab is designed to search for νμνe\nu_\mu \to \nu_e oscillation appearance at Eν1GeVE_\nu \sim 1 {\rm GeV} and to make a decisive test of the LSND signal. The main detector (inside a veto shield) is a spherical volume containing 0.680 ktons of mineral oil. This inner volume, viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the scintillation yield is low. The entire detector is under a 3 m earth overburden. Though the detector is not optimized for low-energy (tens of MeV) events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE can function as a useful supernova neutrino detector. Simple trigger-level cuts can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical Galactic supernova at 10 kpc, about 190 supernova νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events would be detected. By adding MiniBooNE to the international network of supernova detectors, the possibility of a supernova being missed would be reduced. Additionally, the paths of the supernova neutrinos through Earth will be different for MiniBooNE and other detectors, thus allowing tests of matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR

    NuSTAR Tests of Sterile-Neutrino Dark Matter: New Galactic Bulge Observations and Combined Impact

    Full text link
    We analyze two dedicated NuSTAR observations with exposure 190{\sim}190 ks located 10{\sim}10^\circ from the Galactic plane, one above and the other below, to search for x-ray lines from the radiative decay of sterile-neutrino dark matter. These fields were chosen to minimize astrophysical x-ray backgrounds while remaining near the densest region of the dark matter halo. We find no evidence of anomalous x-ray lines in the energy range 5--20 keV, corresponding to sterile neutrino masses 10--40 keV. Interpreted in the context of sterile neutrinos produced via neutrino mixing, these observations provide the leading constraints in the mass range 10--12 keV, improving upon previous constraints in this range by a factor 2{\sim}2. We also compare our results to Monte Carlo simulations, showing that the fluctuations in our derived limit are not dominated by systematic effects. An updated model of the instrumental background, which is currently under development, will improve NuSTAR's sensitivity to anomalous x-ray lines, particularly for energies 3--5 keV.Comment: 16 pages, 5 figures. Text updated to match published version in PRD. Conclusions unchange

    Can a supernova be located by its neutrinos?

    Get PDF
    A future core-collapse supernova in our Galaxy will be detected by several neutrino detectors around the world. The neutrinos escape from the supernova core over several seconds from the time of collapse, unlike the electromagnetic radiation, emitted from the envelope, which is delayed by a time of order hours. In addition, the electromagnetic radiation can be obscured by dust in the intervening interstellar space. The question therefore arises whether a supernova can be located by its neutrinos alone. The early warning of a supernova and its location might allow greatly improved astronomical observations. The theme of the present work is a careful and realistic assessment of this question, taking into account the statistical significance of the various neutrino signals. Not surprisingly, neutrino-electron forward scattering leads to a good determination of the supernova direction, even in the presence of the large and nearly isotropic background from other reactions. Even with the most pessimistic background assumptions, SuperKamiokande (SK) and the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to be within circles of radius 55^\circ and 2020^\circ, respectively. Other reactions with more events but weaker angular dependence are much less useful for locating the supernova. Finally, there is the oft-discussed possibility of triangulation, i.e., determination of the supernova direction based on an arrival time delay between different detectors. Given the expected statistics we show that, contrary to previous estimates, this technique does not allow a good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds some brief comment

    Technique for Direct eV-Scale Measurements of the Mu and Tau Neutrino Masses Using Supernova Neutrinos

    Get PDF
    Early black hole formation in a core-collapse supernova will abruptly truncate the neutrino fluxes. The sharp cutoff can be used to make model-independent time-of-flight neutrino mass tests. Assuming a neutrino luminosity of 105210^{52} erg/s per flavor at cutoff and a distance of 10 kpc, SuperKamiokande can detect an electron neutrino mass as small as 1.8 eV, and the proposed OMNIS detector can detect mu and tau neutrino masses as small as 6 eV. This {\it Letter} presents the first technique with direct sensitivity to eV-scale mu and tau neutrino masses.Comment: 4 pages including 3 inline figures. Submitted to Physical Review Letter

    Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering

    Get PDF
    We propose that neutrino-proton elastic scattering, ν+pν+p\nu + p \to \nu + p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with Tp2Eν2/MpT_p \simeq 2 E_\nu^2/M_p, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from νˉe+pe++n\bar{\nu}_e + p \to e^+ + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of νμ\nu_\mu, ντ\nu_\tau, νˉμ\bar{\nu}_\mu, and νˉτ\bar{\nu}_\tau. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex
    corecore