69 research outputs found

    Environmental legacy of pre-Columbian Maya mercury

    Get PDF
    The Mexico and Central American region has a history of mercury use that began at least two millennia before European colonisation in the 16th century. Archaeologists have reported extensive deposits of cinnabar (HgS) and other mercury materials in ancient human settlements across the region. However, there has been no consideration to date of the environmental legacy of this long history of anthropogenic mercury use. This review begins by synthesising our knowledge of the history and nature of anthropogenic mercury in ancient Mesoamerica based on archaeological data, with a particular focus on the Maya culture of lowland Guatemala, Belize, the Yucatan of Mexico, El Salvador, and Honduras. The Classic Period Maya used mercury for decorative and ceremonial (including funerary) purposes: Cinnabar (HgS) predominantly, but the archaeological record also shows rare finds of elemental mercury (Hg0) in important burial and religious contexts. In this review, we have located and summarised all published data sets collected from (or near) ancient Maya settlements that include environmental mercury measurements. Comparing mercury determinations from pre-Columbian Maya settlements located across the region confirms that seven sites from ten have reported at least one location with mercury concentrations that equal or exceed modern benchmarks for environmental toxicity. The locations with elevated mercury are typically former Maya occupation areas used in the Late Classic Period, situated within large urban settlements abandoned by c. 10th century CE. It is most likely that the mercury detected in buried contexts at Maya archaeological sites is associated with pre-Columbian mercury use, especially of cinnabar. In more complex contexts, where modern biological or specifically anthropogenic inputs are more probable, legacy mercury in the environment will have a more complex, and time transgressive input history. This review identifies current research gaps in our understanding of the long history of Maya mercury use and in the collection of robust total mercury datasets from the Maya world. We identify important areas for future research on the environmental persistence and legacy of mercury, including the need to interpret environment mercury data in the context of mercury exposure and human health at Maya archaeological sites

    Computational Assessment of a 3-Stage Axial Compressor Which Provides Airflow to the NASA 11- by 11-Foot Transonic Wind Tunnel, Including Design Changes for Increased Performance

    Get PDF
    A 24 foot diameter 3-stage axial compressor powered by variable-speed induction motors provides the airflow in the closed-return 11- by 11-Foot Transonic Wind Tunnel (11-Foot TWT) Facility at NASA Ames Research Center at Moffett Field, California. The facility is part of the Unitary Plan Wind Tunnel, which was completed in 1955. Since then, upgrades made to the 11-Foot TWT such as flow conditioning devices and instrumentation have increased blockage and pressure loss in the tunnel, somewhat reducing the peak Mach number capability of the test section. Due to erosion effects on the existing aluminum alloy rotor blades, fabrication of new steel rotor blades is planned. This presents an opportunity to increase the Mach number capability of the tunnel by redesigning the compressor for increased pressure ratio. Challenging design constraints exist for any proposed design, demanding the use of the existing driveline, rotor disks, stator vanes, and hub and casing flow paths, so as to minimize cost and installation time. The current effort was undertaken to characterize the performance of the existing compressor design using available design tools and computational fluid dynamics (CFD) codes and subsequently recommend a new compressor design to achieve higher pressure ratio, which directly correlates with increased test section Mach number. The constant cross-sectional area of the compressor leads to highly diffusion factors, which presents a challenge in simulating the existing design. The CFD code APNASA was used to simulate the aerodynamic performance of the existing compressor. The simulations were compared to performance predictions from the HT0300 turbomachinery design and analysis code, and to compressor performance data taken during a 1997 facility test. It was found that the CFD simulations were sensitive to endwall leakages associated with stator buttons, and to a lesser degree, under-stator-platform flow recirculation at the hub. When stator button leakages were modeled, pumping capability increased by over 20 of pressure rise at design point due to a large reduction in aerodynamic blockage at the hub. Incorporating the stator button leakages was crucial to matching test data. Under-stator-platform flow recirculation was thought to be large due to a lack of seals. The effect of this recirculation was assessed with APNASA simulations recirculating 0.5, 1, and 2 of inlet flow about stators 1 and 2, modeled as axisymmetric mass flux boundary conditions on the hub before and after the vanes. The injection of flow ahead of the stators tended to re-energize the boundary layer and reduce hub separations, resulting in about 3 increased stall margin per 1 of inlet flow recirculated. In order to assess the value of the flow recirculation, a mixing plane simulation of the compressor which gridded the under-stator cavities was generated using the ADPAC CFD code. This simulation indicated that about 0.65 of the inlet flow is recirculated around each shrouded stator. This collective information was applied during the redesign of the compressor. A potential design was identified using HT0300 which improved overall pressure ratio by removing pre-swirl into rotor 1, replacing existing NASA 65 series rotors with double circular arc sections, and re-staggering rotors and the existing stators. The performance of the new design predicted by APNASA and HT0300 is compared to the existing design

    Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Get PDF
    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described

    Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Get PDF
    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described

    Simulation and Control Lab Development for Power and Energy Management for NASA Manned Deep Space Missions

    Get PDF
    The development of distributed hierarchical and agent-based control systems will allow for reliable autonomous energy management and power distribution for on-orbit missions. Power is one of the most critical systems on board a space vehicle, requiring quick response time when a fault or emergency is identified. As NASAs missions with human presence extend beyond low earth orbit autonomous control of vehicle power systems will be necessary and will need to reliably function for long periods of time. In the design of autonomous electrical power control systems there is a need to dynamically simulate and verify the EPS controller functionality prior to use on-orbit. This paper presents the work at NASA Glenn Research Center in Cleveland, Ohio where the development of a controls laboratory is being completed that will be utilized to demonstrate advanced prototype EPS controllers for space, aeronautical and terrestrial applications. The control laboratory hardware, software and application of an autonomous controller for demonstration with the ISS electrical power system is the subject of this paper

    Rapidly Measured Indicators of Recreational Water Quality Are Predictive of Swimming-Associated Gastrointestinal Illness

    Get PDF
    Standard methods to measure recreational water quality require at least 24 hr to obtain results, making it impossible to assess the quality of water within a single day. Methods to measure recreational water quality in ≤ 2 hr have been developed. Application of rapid methods could give considerably more accurate and timely assessments of recreational water quality. We conducted a prospective study of beachgoers at two Great Lakes beaches to examine the association between recreational water quality, obtained using rapid methods, and gastrointestinal (GI) illness after swimming. Beachgoers were asked about swimming and other beach activities and 10–12 days later were asked about the occurrence of GI symptoms. We tested water samples for Enterococcus and Bacteroides species using the quantitative polymerase chain reaction (PCR) method. We observed significant trends between increased GI illness and Enterococcus at the Lake Michigan beach and a positive trend for Enterococcus at the Lake Erie beach. The association remained significant for Enterococcus when the two beaches were combined. We observed a positive trend for Bacteroides at the Lake Erie beach, but no trend was observed at the Lake Michigan beach. Enterococcus samples collected at 0800 hr were predictive of GI illness that day. The association between Enterococcus and illness strengthened as time spent swimming in the water increased. This is the first study to show that water quality measured by rapid methods can predict swimming-associated health effects

    Mechanism of succinate efflux upon reperfusion of the ischaemic heart.

    Get PDF
    AIMS: Succinate accumulates several-fold in the ischaemic heart and is then rapidly oxidized upon reperfusion, contributing to reactive oxygen species production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein-coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known. METHODS AND RESULTS: To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischaemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart. CONCLUSION: Succinate release upon reperfusion of the ischaemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischaemia. These findings will allow the signalling interaction between succinate released from reperfused ischaemic myocardium and SUCNR1 to be explored

    Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Get PDF
    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASAs current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described

    Evaluation of Right-of-Way Fence Tags to Reduce Animal-Vehicle Collisions

    Get PDF
    Animal-vehicle collisions (AVC) pose a serious and growing threat to motorists traveling on ADOT roads. Solutions exist to effectively mitigate AVC, such as wildlife crossing structures (overpasses and underpasses), however these solutions can be costly and untimely. Fence tags, a small reflective tag that is attached to the right-of-way fence and deter animals from crossing the fence, provide a potential cost-effective solution to reduce AVC. The research team evaluated the effectiveness of fence tags designed by Swift Creek, LLC, in reducing AVC. Fence tags were installed along both sides of five 2-mile segments of roadway and maintained for three years by replacing missing or damaged fence tags on a quarterly basis. The research team queried ADOT Crash Data to determine changes in AVC prior to the study (July 1, 2015 \u2013 June 30, 2018) and following fence tag installation (July 1, 2018 \u2013 June 30, 2021). Collisions in the areas where fence tags were installed were reduced by an average of 25.4 percent across all sites. This reduction was significant; however, the control sites were also reduced by a similar average of 25.8 percent across all study sites. These findings indicate that (1) the effectiveness of fence tags at reducing AVC were not noticeably different than the control, or (2) external factors that were not considered in the study, such as the effect of nearby road construction, may have influenced the effectiveness of the fence tags. To better understand the results of this study and improve available data for future projects and management decisions, the research team recommends: (1) further examining fence tags as a viable mitigation technique by looking at other aspects that could be taken into account in the study, such as other external factors affecting their use; measuring the effective tag size; implementing a longer observation period before, during, and after the intervention, etc. and (2) implementing data collection forms that capture animal type/species

    Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation.

    Get PDF
    During heart transplantation, storage in cold preservation solution is thought to protect the organ by slowing metabolism; by providing osmotic support; and by minimising ischaemia-reperfusion (IR) injury upon transplantation into the recipient1,2. Despite its widespread use our understanding of the metabolic changes prevented by cold storage and how warm ischaemia leads to damage is surprisingly poor. Here, we compare the metabolic changes during warm ischaemia (WI) and cold ischaemia (CI) in hearts from mouse, pig, and human. We identify common metabolic alterations during WI and those affected by CI, thereby elucidating mechanisms underlying the benefits of CI, and how WI causes damage. Succinate accumulation is a major feature within ischaemic hearts across species, and CI slows succinate generation, thereby reducing tissue damage upon reperfusion caused by the production of mitochondrial reactive oxygen species (ROS)3,4. Importantly, the inevitable periods of WI during organ procurement lead to the accumulation of damaging levels of succinate during transplantation, despite cooling organs as rapidly as possible. This damage is ameliorated by metabolic inhibitors that prevent succinate accumulation and oxidation. Our findings suggest how WI and CI contribute to transplant outcome and indicate new therapies for improving the quality of transplanted organs.Work in the M.P.M. laboratory was supported by the Medical Research Council UK (MC_U105663142) and by a Wellcome Trust Investigator award (110159/Z/15/Z) to M.P.M. Work in the C.F. laboratory was supported by the Medical Research Council (MRC_MC_UU_12022/6). Work in the K.S.P. laboratory was supported by the Medical Research Council UK. Work in the RCH lab laboratory was supported by a Wellcome Trust Investigator award (110158/Z/15/Z) and a PhD studentship for .L.P from the University of Glasgow. A.V.G. was supported by a PhD studentship funded by the National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Organ Donation and Transplantation at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT)
    corecore