3,549 research outputs found

    Demonstration of a robust pseudogap in a three-dimensional correlated electronic system

    Full text link
    We outline a partial-fractions decomposition method for determining the one-particle spectral function and single-particle density of states of a correlated electronic system on a finite lattice in the non self-consistent T-matrix approximation to arbitrary numerical accuracy, and demonstrate the application of these ideas to the attractive Hubbard model. We then demonstrate the effectiveness of a finite-size scaling ansatz which allows for the extraction of quantities of interest in the thermodynamic limit from this method. In this approximation, in one or two dimensions, for any finite lattice or in the thermodynamic limit, a pseudogap is present and its energy diverges as Tc is approached from above; this is an unphysical manifestation of using an approximation that predicts a spurious phase transition in one or two dimensions. However, in three dimensions one expects the transition predicted by this approximation to represent a true continuous phase transition, and in the thermodynamic limit any pseudogap predicted by this formulation will remain finite. We have applied our method to the attractive Hubbard model on a three-dimensional simple cubic lattice, and find that for intermediate coupling a prominent pseudogap is found in the single-particle density of states, and this gap persists over a large temperature range. In addition, we also show that for weak coupling a pseudogap is also present. The pseudogap energy at the transition temperature is almost a factor of three larger than the T=0 BCS gap for intermediate coupling, whereas for weak coupling the pseudogap and BCS gap energies are essentially equal.Comment: 28 pages, 9 figure

    Spin pumping by a field-driven domain wall

    Full text link
    We calculate the charge current in a metallic ferromagnet to first order in the time derivative of the magnetization direction. Irrespective of the microscopic details, the result can be expressed in terms of the conductivities of the majority and minority electrons and the non-adiabatic spin transfer torque parameter β\beta. The general expression is evaluated for the specific case of a field-driven domain wall and for that case depends strongly on the ratio of β\beta and the Gilbert damping constant. These results may provide an experimental method to determine this ratio, which plays a crucial role for current-driven domain-wall motion.Comment: 4 pages, 1 figure v2: some typos corrected v3: published versio

    Subscale, hydrogen-burning, airframe-integrated-scramjet: Experimental and theoretical evaluation of a water cooled strut airframe-integrated-scramjet: Experimental leading edge

    Get PDF
    A water-cooled leading-edge design for an engine/airframe integrated scramjet model strut leading edge was evaluated. The cooling design employs a copper cooling tube brazed just downstream of the leading edge of a wedge-shaped strut which is constructed of oxygen-free copper. The survival of the strut leading edge during a series of tests at stagnation point heating rates confirms the practicality of the cooling design. A finite difference thermal model of the strut was also proven valid by the reasonable agreement of calculated and measured values of surface temperature and cooling-water heat transfer

    Rate constants and Arrhenius parameters for the reactions of OH radicals and Cl atoms with CF3CH2OCHF2, CF3CHClOCHF2 and CF3CH2OCClF2, using the discharge-flow/resonance fluorescence method

    Get PDF
    Rate constants have been determined for the reactions of OH radicals and Cl atoms with the three partially halogenated methyl-ethyl ethers, CF3_3CH2_2OCHF2_2, CF3_3CHClOCHF2_2 and CF3_3CH2_2OCClF2_2, using discharge-flow techniques to generate the OH radicals and the Cl atoms and resonance fluorescence to observe changes in their relative concentrations in the presence of added ether. For each combination of radical and ether, experiments were carried out at three temperatures between 292 and 410 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature: OH + CF3_3CH2_2OCHF2_2: kk = (2.0±\pm0.8) ×\times 1011^{-11} exp( – 2110 ±\pm 150 K / T) cm3^3 molecule1^{-1} s1^{-1} OH + CF3_3CHClOCHF2_2: kk = (4.5 ±\pm 1.3) ×\times 1013^{-13} exp( – 940 ±\pm 100 K / T) cm3^3 molecule1^{-1} s1^{-1} OH + CF3_3CH2_2OCClF2_2: kk = (1.6 ±\pm 0.6) ×\times 1012^{-12} exp( – 1100 ±\pm 125 K / T) cm3^3 molecule1^{-1} s1^{-1} Cl + CF3_3CH2_2OCHF2_2: kk = (6.1 ±\pm 1.4) ×\times 1012^{-12} exp( – 1830 ±\pm 90 K / T) cm3^3 molecule1^{-1} s1^{-1} Cl + CF3_3CHClOCHF2_2: kk = (7.8 ±\pm 2.6) ×\times 1011^{-11} exp( – 2980 ±\pm 130 K / T) cm3^3 molecule1^{-1} s1^{-1} Cl + CF3_3CH2_2OCClF2_2: kk = (2.2 ±\pm 0.2) ×\times 1011^{-11} exp( – 2700 ±\pm 40 K / T) cm3^3 molecule1^{-1} s1^{-1} The results are compared with those obtained previously for the same and related reactions of OH radicals and Cl atoms, and the atmospheric implications of the results are considered briefly

    Advanced secondary power system for transport aircraft

    Get PDF
    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent

    Reconstructing glacial outburst floods (jökulhlaups) from geomorphology: challenges, solutions, and an enhanced interpretive framework

    Get PDF
    Glacial outburst floods (jökulhlaups) have been significant drivers of landscape change across Earth throughout the Quaternary and are a contemporary hazard in Arctic and alpine regions worldwide. Geomorphologic evidence is a foundation for reconstructing past and contemporary flood events and using additional analytical methods such as geochronology and paleohydraulics. Yet, accurate interpretation of jökulhlaup landforms and depositional sequences poses a persistent challenge due to complex controls on flood hydraulics and landscape evolution. Researchers have developed numerous strategies to reduce or resolve these challenges, but a comprehensive, globally applicable model to interpret flood evidence outside of sedimentary environments is lacking. This article synthesizes existing case studies to describe jökulhlaup geomorphologic interpretive challenges, discuss strategies to resolve them, and present a conceptual model of flood landform assemblages to illustrate hydraulic and environmental controls on resultant geomorphologic impacts. This enhanced interpretive framework aids researchers in identifying, interpreting, and testing geomorphologic evidence to reconstruct past jökulhlaups and predict future flood impacts as robustly as possible at a global, landscape-wide scale. Understanding jökulhlaup geomorphology yields insight into glacial lake and ice margin dynamics, the role of extreme events in landscape evolution, and interactions between climate, ice sheets, and hydrology. Moreover, it is increasingly important as glacial outburst floods may become more frequent due to climate-driven ice retreat, advancing predictive capacities to mitigate societal risk downstream.</div

    Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model

    Full text link
    We use continuous-time quantum Monte Carlo simulations to study retardation effects in the metallic, quarter-filled Holstein model in one dimension. Based on results which include the one- and two-particle spectral functions as well as the optical conductivity, we conclude that with increasing phonon frequency the ground state evolves from one with dominant diagonal order---2k_F charge correlations---to one with dominant off-diagonal fluctuations, namely s-wave pairing correlations. In the parameter range of this crossover, our numerical results support the existence of a spin gap for all phonon frequencies. The crossover can hence be interpreted in terms of preformed pairs corresponding to bipolarons, which are essentially localised in the Peierls phase, and "condense" with increasing phonon frequency to generate dominant pairing correlations.Comment: 11 pages, 5 figure

    Analysis of the role of Ser1/Ser2/Thr9 phosphorylation on myosin II assembly and function in live cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphorylation of non-muscle myosin II regulatory light chain (RLC) at Thr18/Ser19 is well established as a key regulatory event that controls myosin II assembly and activation, both in vitro and in living cells. RLC can also be phosphorylated at Ser1/Ser2/Thr9 by protein kinase C (PKC). Biophysical studies show that phosphorylation at these sites leads to an increase in the Km of myosin light chain kinase (MLCK) for RLC, thereby indirectly inhibiting myosin II activity. Despite unequivocal evidence that PKC phosphorylation at Ser1/Ser2/Thr9 can regulate myosin II function in vitro, there is little evidence that this mechanism regulates myosin II function in live cells.</p> <p>Results</p> <p>The purpose of these studies was to investigate the role of Ser1/Ser2/Thr9 phosphorylation in live cells. To do this we utilized phospho-specific antibodies and created GFP-tagged RLC reporters with phosphomimetic aspartic acid substitutions or unphosphorylatable alanine substitutions at the putative inhibitory sites or the previously characterized activation sites. Cell lines stably expressing the RLC-GFP constructs were assayed for myosin recruitment during cell division, the ability to complete cell division, and myosin assembly levels under resting or spreading conditions. Our data shows that manipulation of the activation sites (Thr18/Ser19) significantly alters myosin II function in a number of these assays while manipulation of the putative inhibitory sites (Ser1/Ser2/Thr9) does not.</p> <p>Conclusions</p> <p>These studies suggest that inhibitory phosphorylation of RLC is not a substantial regulatory mechanism, although we cannot rule out its role in other cellular processes or perhaps other types of cells or tissues in vivo.</p

    A reliable Pade analytical continuation method based on a high accuracy symbolic computation algorithm

    Full text link
    We critique a Pade analytic continuation method whereby a rational polynomial function is fit to a set of input points by means of a single matrix inversion. This procedure is accomplished to an extremely high accuracy using a novel symbolic computation algorithm. As an example of this method in action we apply it to the problem of determining the spectral function of a one-particle thermal Green's function known only at a finite number of Matsubara frequencies with two example self energies drawn from the T-matrix theory of the Hubbard model. We present a systematic analysis of the effects of error in the input points on the analytic continuation, and this leads us to propose a procedure to test quantitatively the reliability of the resulting continuation, thus eliminating the black magic label frequently attached to this procedure.Comment: 11 pages, 8 eps figs, revtex format; revised version includes reference to anonymous ftp site containing example codes (MapleVr5.1 worksheets) displaying the implementation of the algorithm, including the padematinv.m library packag
    corecore