32 research outputs found

    Comparison of hspX gene sequence in the Beijing and non-Beijing Mycobacterium tuberculosis

    No full text
    Purpose: The pathogenicity of various lineages of Mycobacterium tuberculosis (MTB) is different. This could be due to the difference in survival ability within the host macrophage. The alpha crystalline secretion protein, a product of the hspx gene, is one of the bacterial protection factors in these stressful situations. The Beijing family, part of the East Asian lineage, was reported to be more virulent. Regarding the importance of this protein in pathogenicity, this study was conducted to investigate the polymorphism of the hspx gene in Beijing family compared to non- Beijing strains. Method: DNA of 50 MTB isolates were extracted by boiling method. The existence of hspx gene was determined using PCR-specific primer and finally PCR product was sequenced to examine the polymorphism in both direct and reverse directions. Sequencing results were aligned by chromas software. Results: The hspx gene was detected in all of the Beijing and non-Beijing isolates. The polymorphism in the sequences of this gene were not observed in all of the MTB isolates. Discussion: This study indicated that hspx gene is protected. Also it has showed that lineage type was not related to the sequence of hspX gene, but the expression of this protein may be different, which requires further studies. © 202

    Achieving to some outranking relationships between post mining land uses through mined land suitability analysis

    No full text
    Adoption of most suitable post mining land use is a problem with multi-dimensional nature. There are so many factors in this problem which seriously influence on the decision judgments. Therefore, in this study a fifty-attribute framework for mined land suitability analysis including fifty numbers of economical, social, technical and mine site factors developed to be a foundation for this decision making problem. Analysis by an outranking multi-attribute decision-making technique, called elimination et choix traduisant la realite method, was taken into consideration because of its clear advantages on the field of mined land suitability analysis as compared with multi-attribute decision-making ranking techniques. Analytical hierarchy process method applied to calculate global weights of the attributes through pair wise comparison matrixes. The weights then passed to the elimination et choix traduisant la realit method so that the most efficient post mining land uses could be appointed through comparisons of pair-wise dominance relationships between alternatives. This approach applied to an illustrative example where, final results showed that, there were two non-dominated land-uses for the considered example; industrial and pasture. However by increasing indifference threshold limit, the non-dominated set reduced to a single alternative that was pasture land-use

    Th1-Th17 ratio as a new insight in rheumatoid arthritis disease

    No full text
    The Th17, Th1 and dual Th17/Th1 cells are important players in rheumatoid arthritis (RA) disease. To assess their roles, the frequency and impact of these cells were investigated in patients with different disease activity. In 14 new cases and 41 established RA patients in comparison with 22 healthy controls, the percentages of Th17, Th1 and dual Th17/Th1 cells were determined by flow-cytometry and their correlations were investigated with disease activity score (DAS28). Moreover, serum levels of IL-6 and IL-17 as inducer and functional cytokines for Th17 were investigated. Finally, serum levels of anti citrullinated protein antibody (ACPA) and rheumatoid factor (RF) were assessed. Percentage of Th17 cells in RA patients were increased in comparison with healthy controls (p<0.01). In correlation with this finding, IL-17 and IL-6 cytokines in RA patients also increased (p<0.01). The Th1 cells in RA patients were less than healthy group (p<0.05) and showed negative correlation with disease activity (r=-0.328, p<0.01). Dual Th17/Th1 cell only in new cases of RA were more than healthy control groups (p<0.01). The Th1/Th17 ratio in RA patients is statistically different with healthy control group (p<0.01) and it has negative correlation with disease activity (r=-264, p<0.05). The levels of ACPA and RF were increased with disease progression. Decreasing of Th1/Th17 ratio in RA patient suggested a new paradigm in the field of autoimmune disease and indicated that imbalance or plasticity between these subsets can be important in progress, diagnosis and therapy of RA disease. © February 2018, Iran J Allergy Asthma Immunol. All rights reserved

    Dysregulation of helper T lymphocytes in esophageal squamous cell carcinoma (ESCC) patients is highly associated with aberrant production of miR-21

    No full text
    Dysregulation of helper T (Th) cell subsets has been contributed to the initiation and propagation of esophageal squamous cell carcinoma (ESCC). Different microRNAs (miRNAs) have been reported to control the development and functions of tumor-associated immune cells in ESCC. Here, we aimed to assess the IL-10, TGF-β, IFN-γ, and IL-17a-producing CD3+CD8� T cells in association whit miR-21, miR-29b, miR-106a, and miR-155 expression in ESCC patients. A total of 34 ESCC patients including 12 newly diagnosed (ND) and 22 under-treatment (UT) cases and also 34 age-matched healthy donors were enrolled. Flow cytometric characterization of stimulated T cells was performed by staining of the cells with fluorescent conjugated specific anti-human CD3 and CD8 cell surface markers as well as IL-17a, IFN-γ, IL-10, and TGF-β intracytoplasmic cytokines. Circulating RNA was extracted from the plasma, and qRT-PCR was used to evaluate the expression of microRNAs. TGF-β plasma levels were also assessed by ELISA. Results showed that the frequency of Th cells was significantly reduced in patients. A significant increase in Treg as well as Th17 cells population in both patient subgroups was observed. ND patients showed elevated level of Th1 cells and IL-10. However the mean expression of IFN-γ was significantly decreased in Th cells. We also detected higher level of miR-21 in the ESCC patients which was significantly correlated with different subsets of Th cells. Our findings revealed that immune response related to the Th cells is highly impaired in ESCC patients. Association between miR-21 and Th subsets could be correlated with the impairment of anti-tumor immunity and ESCC pathogenesis, which could be potentially used as an important target for immunotherapeutic approaches. © 2019, Springer Science+Business Media, LLC, part of Springer Nature

    Computer Simulation of TSP1 Inhibition of VEGF–Akt–eNOS: An Angiogenesis Triple Threat

    No full text
    The matricellular protein thrombospondin-1 (TSP1) is a potent inhibitor of angiogenesis. Specifically, TSP1 has been experimentally shown to inhibit signaling downstream of vascular endothelial growth factor (VEGF). The molecular mechanism of this inhibition is not entirely clear. We developed a detailed computational model of VEGF signaling to Akt–endothelial nitric oxide synthase (eNOS) to investigate the quantitative molecular mechanism of TSP1 inhibition. The model demonstrated that TSP1 acceleration of VEGFR2 degradation is sufficient to explain the inhibition of VEGFR2 and eNOS phosphorylation. However, Akt inhibition requires TSP1-induced phosphatase recruitment to VEGFR2. The model was then utilized to test various strategies for the rescue of VEGF signaling to Akt and eNOS. Inhibiting TSP1 was predicted to be not as effective as CD47 depletion in rescuing signaling to Akt. The model further predicts that combination strategy involving depletion of CD47 and inhibition of TSP1 binding to CD47 is necessary for effective recovery of signaling to eNOS. In all, computational modeling offers insight to molecular mechanisms involving TSP1 interaction with VEGF signaling and provides strategies for rescuing angiogenesis by targeting TSP1–CD47 axis

    Table_1_Computer Simulation of TSP1 Inhibition of VEGF–Akt–eNOS: An Angiogenesis Triple Threat.DOCX

    No full text
    <p>The matricellular protein thrombospondin-1 (TSP1) is a potent inhibitor of angiogenesis. Specifically, TSP1 has been experimentally shown to inhibit signaling downstream of vascular endothelial growth factor (VEGF). The molecular mechanism of this inhibition is not entirely clear. We developed a detailed computational model of VEGF signaling to Akt–endothelial nitric oxide synthase (eNOS) to investigate the quantitative molecular mechanism of TSP1 inhibition. The model demonstrated that TSP1 acceleration of VEGFR2 degradation is sufficient to explain the inhibition of VEGFR2 and eNOS phosphorylation. However, Akt inhibition requires TSP1-induced phosphatase recruitment to VEGFR2. The model was then utilized to test various strategies for the rescue of VEGF signaling to Akt and eNOS. Inhibiting TSP1 was predicted to be not as effective as CD47 depletion in rescuing signaling to Akt. The model further predicts that combination strategy involving depletion of CD47 and inhibition of TSP1 binding to CD47 is necessary for effective recovery of signaling to eNOS. In all, computational modeling offers insight to molecular mechanisms involving TSP1 interaction with VEGF signaling and provides strategies for rescuing angiogenesis by targeting TSP1–CD47 axis.</p

    Table_3_Computer Simulation of TSP1 Inhibition of VEGF–Akt–eNOS: An Angiogenesis Triple Threat.DOCX

    No full text
    <p>The matricellular protein thrombospondin-1 (TSP1) is a potent inhibitor of angiogenesis. Specifically, TSP1 has been experimentally shown to inhibit signaling downstream of vascular endothelial growth factor (VEGF). The molecular mechanism of this inhibition is not entirely clear. We developed a detailed computational model of VEGF signaling to Akt–endothelial nitric oxide synthase (eNOS) to investigate the quantitative molecular mechanism of TSP1 inhibition. The model demonstrated that TSP1 acceleration of VEGFR2 degradation is sufficient to explain the inhibition of VEGFR2 and eNOS phosphorylation. However, Akt inhibition requires TSP1-induced phosphatase recruitment to VEGFR2. The model was then utilized to test various strategies for the rescue of VEGF signaling to Akt and eNOS. Inhibiting TSP1 was predicted to be not as effective as CD47 depletion in rescuing signaling to Akt. The model further predicts that combination strategy involving depletion of CD47 and inhibition of TSP1 binding to CD47 is necessary for effective recovery of signaling to eNOS. In all, computational modeling offers insight to molecular mechanisms involving TSP1 interaction with VEGF signaling and provides strategies for rescuing angiogenesis by targeting TSP1–CD47 axis.</p

    Table_2_Computer Simulation of TSP1 Inhibition of VEGF–Akt–eNOS: An Angiogenesis Triple Threat.DOCX

    No full text
    <p>The matricellular protein thrombospondin-1 (TSP1) is a potent inhibitor of angiogenesis. Specifically, TSP1 has been experimentally shown to inhibit signaling downstream of vascular endothelial growth factor (VEGF). The molecular mechanism of this inhibition is not entirely clear. We developed a detailed computational model of VEGF signaling to Akt–endothelial nitric oxide synthase (eNOS) to investigate the quantitative molecular mechanism of TSP1 inhibition. The model demonstrated that TSP1 acceleration of VEGFR2 degradation is sufficient to explain the inhibition of VEGFR2 and eNOS phosphorylation. However, Akt inhibition requires TSP1-induced phosphatase recruitment to VEGFR2. The model was then utilized to test various strategies for the rescue of VEGF signaling to Akt and eNOS. Inhibiting TSP1 was predicted to be not as effective as CD47 depletion in rescuing signaling to Akt. The model further predicts that combination strategy involving depletion of CD47 and inhibition of TSP1 binding to CD47 is necessary for effective recovery of signaling to eNOS. In all, computational modeling offers insight to molecular mechanisms involving TSP1 interaction with VEGF signaling and provides strategies for rescuing angiogenesis by targeting TSP1–CD47 axis.</p
    corecore