77 research outputs found

    Swift/XRT- NuSTAR spectra of type 1 AGN]{Swift/XRT- NuSTAR spectra of type 1 AGN: confirming INTEGRAL results on the high energy cut-off

    Get PDF
    We present the 0.5 - 78 keV spectral analysis of 18 broad line AGN belonging to the INTEGRAL complete sample. Using simultaneous Swift-XRT and NuSTAR observations and employing a simple phenomenological model to fit the data, we measure with a good constraint the high energy cut-off in 13 sources, while we place lower limits on 5 objects. We found a mean high-energy cut-off of 111 keV (standard deviation = 45 keV) for the whole sample, in perfect agreement with what found in our previous work using non simultaneous observations and with what recently published using NuSTAR data. This work suggests that simultaneity of the observations in the soft and hard X-ray band is important but not always essential, especially if flux and spectral variability are properly accounted for. A lesser agreement is found when we compare our cut-off measurements with the ones obtained by Ricci et al. (2017) using Swift-BAT high energy data, finding that their values are systematically higher than ours. We have investigated whether a linear correlation exists between photon index and the cut-off and found a weak one, probably to be ascribed to the non perfect modelling of the soft part of the spectra, due to the poor statistical quality of the 2-10 keV X-ray data. No correlation is also found between the Eddington ratio and the cut-off, suggesting that only using high statistical quality broad-band spectra is it possible to verify the theoretical predictions and study the physical characteristics of the hot corona and its geometry.Comment: 12 pages, 11 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Flat-spectrum radio sources as likely counterparts of unidentified INTEGRAL sources (Research Note)

    Get PDF
    Many sources in the fourth INTEGRAL/IBIS catalogue are still unidentified, since they lack an optical counterpart. An important tool that can help in identifying/classifying these sources is the cross-correlation with radio catalogues, which are very sensitive and positionally accurate. Moreover, the radio properties of a source, such as the spectrum or morphology, could provide further insight into its nature. Flat-spectrum radio sources at high Galactic latitudes are likely to be AGN, possibly associated to a blazar or to the compact core of a radio galaxy. Here we present a small sample of 6 sources extracted from the fourth INTEGRAL/IBIS catalogue that are still unidentified/unclassified, but which are very likely associated with a bright, flat-spectrum radio object. To confirm the association and to study the source X-ray spectral parameters, we performed X-ray follow-up observations with Swift/XRT. We report the results obtained from this search and discuss the nature of each source. 5 of the 6 radio associations are also detected in X-rays; in 3 cases they are the only counterpart found. IGR J06073--0024 is a flat-spectrum radio quasar at z=1.08, IGR J14488--4008 is a newly discovered radio galaxy, while IGR J18129--0649 is an AGN of a still unknown type. The nature of IGR J07225--3810 and IGR J19386--4653 is less well defined, since in both cases we find another X-ray source in the INTEGRAL error circle; nevertheless, the flat-spectrum radio source, likely to be a radio loud AGN, remains a viable and more convincing association in both cases. Only for IGR J11544--7618 could we not find any convincing counterpart since the radio association is not an X-ray emitter.Comment: 7 pages, 7 figures, accepted for publication on Astronomy and Astrophysic

    X-ray spectral evolution of V404 Cygni in the initial phase of the 2015 outburst

    Get PDF
    The black hole binary GS 2023+338 exhibited an unprecedently bright outburst on June 2015. Since June 17th, the high energy instruments on board INTEGRAL detected an extremely variable emission during both bright and low luminosity phases, with dramatic variations of the hardness ratio on time scales of ~seconds. The analysis of the IBIS and SPI data reveals the presence of hard spectra in the brightest phases, compatible with thermal Comptonization with temperature kTe ~ 40 keV. The seed photons temperature is best fit by kT0 ~ 7 keV, that is too high to be compatible with blackbody emission from the disk. This result is consistent with the seed photons being provided by a different source, that we hypothesize to be a synchrotron driven component in the jet. During the brightest phase of flares, the hardness shows a complex pattern of correlation with flux, with a maximum energy released in the range 40-100 keV. The hard X-ray variability for E > 50 keV is correlated with flux variations in the softer band, showing that the overall source variability cannot originate entirely from absorption, but at least part of it is due to the central accreting source.Comment: 5 pages, 4 figures, accepted for publication in Astrophysical Journal Letter

    Water megamaser emission in hard X-ray selected AGN

    Full text link
    Water megamaser emission at 22 GHz has proven to be a powerful tool for astrophysical studies of AGN allowing an accurate determination of the central black hole mass and of the accretion disc geometry and dynamics. However, after searches among thousands of galaxies, only ~ 200 of them have shown such spectroscopic features, most of them of uncertain classification. In addition, the physical and geometrical conditions under which maser activates are still unknown. In this work we aim at characterizing the occurrence of water maser emission in an unbiased sample of AGN, investigating the relation with the X-ray properties and the possible favorable geometry needed to detect water maser. We have searched for 22 GHz maser emission in a hard X-ray selected sample of AGN, taken from the INTEGRAL/IBIS survey above 20 keV. Of the 380 sources in the sample, only half have water maser data. We have also considered a sub-sample of 87 sources, volume limited, for which we obtained new Green Bank Telescope and Effelsberg observations (for 35 sources), detecting one new maser and increasing its radio coverage to 75%. The detection rate of water maser emission in the total sample is 15+/-3%, this fraction raises up to 19+/-5% for the complete sub-sample, especially if considering type 2 and Compton thick AGN. These results demonstrate that the hard X-ray selection may significantly enhance the maser detection efficiency over comparably large optical/infrared surveys. A possible decline of the detection fraction with increasing luminosity might suggest that an extreme luminous nuclear environment does not favour maser emission. The large fraction of CT AGN with water maser emission could be explained in terms of geometrical effects, being the maser medium the very edge-on portion of the obscuring medium.Comment: 21 pages, 3 figures. Accepted for publication in A&A June 202

    Disc-Jet coupling in the LMXB 4U1636-53 from INTEGRAL

    Get PDF
    We report on the spectral analysis results of the neutron star, atoll type, low mass X-ray Binary 4U1636-53 observed by INTEGRAL and BeppoSAX satellites. Spectral behavior in three different epochs corresponding to three different spectral states has been deeply investigated. Two data set spectra show a continuum well described by one or two soft blackbody plus a Comptonized components with changes in the Comptonizing electrons and black body temperature and the accretion rates, which are typical of the spectral transitions from high to low state. In one occasion INTEGRAL spectrum shows, for first time in this source, a hard tail dominating the emission above 30 keV. The total spectrum is fitted as the sum of a Comptonized component similar to soft state and a power-law component (Gamma=2.76), indicating the presence of a non thermal electron distribution of velocities. In this case, a comparison with hard tails detected in soft states from neutron stars systems and some black hole binaries suggests that a similar mechanism could originate these components in both cases.Comment: 6 pages, 4 figures, 2 tables. accepted Ap

    Where are Compton-thick radio galaxies? A hard X-ray view of three candidates

    Get PDF
    We present a broad-band X-ray spectral analysis of the radio-loud active galactic nuclei NGC 612, 4C 73.08 and 3C 452, exploiting archival data from NuSTAR, XMM-Newton, Swift and INTEGRAL. These Compton-thick candidates are the most absorbed sources among the hard X-ray selected radio galaxies studied in Panessa et al. We find an X-ray absorbing column density in every case below 1.5 × 1024 cm-2, and no evidence for a strong reflection continuum or iron K α line. Therefore, none of these sources is properly Compton-thick. We review other Compton-thick radio galaxies reported in the literature, arguing that we currently lack strong evidences for heavily absorbed radio-loud AGNs
    corecore