7 research outputs found

    Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975

    Get PDF
    We present a study of the petrology and geochemistry of basaltic shergottite Northwest Africa 2975 (NWA 2975). NWA 2975 is a medium-grained basalt with subophitic to granular texture. Electron microprobe (EMP) analyses show two distinct pyroxene compositional trends and patchy compositional zoning patterns distinct from those observed in other meteorites such as Shergotty or QUE 94201. As no bulk sample was available to us for whole rock measurements, we characterized the fusion crust and its variability by secondary ion mass spectrometer (SIMS) measurements and laser ablation inductively coupled plasma spectroscopy (LA-ICP-MS) analyses as a best-available proxy for the bulk rock composition. The fusion crust major element composition is comparable to the bulk composition of other enriched basaltic shergottites, placing NWA 2975 within that sample group. The CI-normalized REE (rare earth element) patterns are flat and also parallel to those of other enriched basaltic shergottites. Merrillite is the major REE carrier and has a flat REE pattern with slight depletion of Eu, parallel to REE patterns of merrillites from other basaltic shergottites. The oxidation state of NWA 2975 calculated from Fe-Ti oxide pairs is NNO-1.86, close to the QFM buffer. NWA 2975 represents a sample from the oxidized and enriched shergottite group, and our measurements and constraints on its origin are consistent with the hypothesis of two distinct Martian mantle reservoirs: a reduced, LREE-depleted reservoir and an oxidized, LREE-enriched reservoir. Stishovite, possibly seifertite, and dense SiO_2 glass were also identified in the meteorite, allowing us to infer that NWA 2975 experienced a realistic shock pressure of ~30 GPa

    Mineral chemistry of the Tissint meteorite: Indications of two-stage crystallization in a closed system

    Get PDF
    The Tissint meteorite is a geochemically depleted, olivine-phyric shergottite. Olivine megacrysts contain 300–600 μm cores with uniform Mg# (~80 ± 1) followed by concentric zones of Fe-enrichment toward the rims. We applied a number of tests to distinguish the relationship of these megacrysts to the host rock. Major and trace element compositions of the Mg-rich core in olivine are in equilibrium with the bulk rock, within uncertainty, and rare earth element abundances of melt inclusions in Mg-rich olivines reported in the literature are similar to those of the bulk rock. Moreover, the P Kα intensity maps of two large olivine grains show no resorption between the uniform core and the rim. Taken together, these lines of evidence suggest the olivine megacrysts are phenocrysts. Among depleted olivine-phyric shergottites, Tissint is the first one that acts mostly as a closed system with olivine megacrysts being the phenocrysts. The texture and mineral chemistry of Tissint indicate a crystallization sequence of: olivine (Mg# 80 ± 1) → olivine (Mg# 76) + chromite → olivine (Mg# 74) + Ti-chromite → olivine (Mg# 74–63) + pyroxene (Mg# 76–65) + Cr-ulvöspinel → olivine (Mg# 63–35) + pyroxene (Mg# 65–60) + plagioclase, followed by late-stage ilmenite and phosphate. The crystallization of the Tissint meteorite likely occurred in two stages: uniform olivine cores likely crystallized under equilibrium conditions; and a fractional crystallization sequence that formed the rest of the rock. The two-stage crystallization without crystal settling is simulated using MELTS and the Tissint bulk composition, and can broadly reproduce the crystallization sequence and mineral chemistry measured in the Tissint samples. The transition between equilibrium and fractional crystallization is associated with a dramatic increase in cooling rate and might have been driven by an acceleration in the ascent rate or by encounter with a steep thermal gradient in the Martian crust

    Mineral chemistry of the Tissint meteorite: Indications of two-stage crystallization in a closed system

    Get PDF
    The Tissint meteorite is a geochemically depleted, olivine-phyric shergottite. Olivine megacrysts contain 300–600 μm cores with uniform Mg# (~80 ± 1) followed by concentric zones of Fe-enrichment toward the rims. We applied a number of tests to distinguish the relationship of these megacrysts to the host rock. Major and trace element compositions of the Mg-rich core in olivine are in equilibrium with the bulk rock, within uncertainty, and rare earth element abundances of melt inclusions in Mg-rich olivines reported in the literature are similar to those of the bulk rock. Moreover, the P Kα intensity maps of two large olivine grains show no resorption between the uniform core and the rim. Taken together, these lines of evidence suggest the olivine megacrysts are phenocrysts. Among depleted olivine-phyric shergottites, Tissint is the first one that acts mostly as a closed system with olivine megacrysts being the phenocrysts. The texture and mineral chemistry of Tissint indicate a crystallization sequence of: olivine (Mg# 80 ± 1) → olivine (Mg# 76) + chromite → olivine (Mg# 74) + Ti-chromite → olivine (Mg# 74–63) + pyroxene (Mg# 76–65) + Cr-ulvöspinel → olivine (Mg# 63–35) + pyroxene (Mg# 65–60) + plagioclase, followed by late-stage ilmenite and phosphate. The crystallization of the Tissint meteorite likely occurred in two stages: uniform olivine cores likely crystallized under equilibrium conditions; and a fractional crystallization sequence that formed the rest of the rock. The two-stage crystallization without crystal settling is simulated using MELTS and the Tissint bulk composition, and can broadly reproduce the crystallization sequence and mineral chemistry measured in the Tissint samples. The transition between equilibrium and fractional crystallization is associated with a dramatic increase in cooling rate and might have been driven by an acceleration in the ascent rate or by encounter with a steep thermal gradient in the Martian crust

    Application of non-extensive statistical physics on Martian nakhlites: A first-order approach on the crystal size distribution of pyroxene using Tsallis entropy

    No full text
    In this paper, we present a Non-Extensive Statistical Physics (NESP) approach in order to investigate the crystal size distribution of pyroxene crystals from Martian meteorites, nakhlites MIL090030 and MIL090032, which reflect igneous processes on Mars 1.3 Ga ago. The formation of pyroxene crystals is a complex process in which fractional crystallization of an igneous melt is predominant in the evolution process. It is exactly this type of complex process, such as that of crystal-melt interaction, for which NESP could be applied. The results of the analysis indicate that a model based on the Tsallis entropy is an appropriate framework for the statistical-physics interpretation of crystal size distribution of pyroxene grains in these rocks. The similarity of the estimated q values supports the previous conclusions on the pairing between the studied nakhlites

    Petrological and geochemical evidence for a hot crystallization path and a recharge filtering bypass at Antimilos, Milos volcanic field, Greece

    No full text
    Antimilos volcano in the South Aegean Volcanic Arc, Greece, comprises an andesite–dacite suite that follows a distinct evolutionary path than the main edifice of the Milos volcanic field, despite their proximity. Petrographic and geochemical analyses reveal that basaltic andesite to low-Si dacite lavas have similar phenocryst assemblages that indicate crystallization from hot, relatively dry magmas in an upper crustal storage region. Rare antecrystic high-Mg# clinopyroxene cores with low Y, low Dy, and high Sr contents record the cryptic involvement of amphibole, a phase nominally absent from the erupted products, in the deeper parts of the plumbing system. Low temperature antecrysts with textures recording various degrees of disequilibrium suggest a protracted history of interaction between the upper crustal reservoir and deeper mafic melts, forming mobile hybrid magmas that consequently erupt as highly mingled, crystal-rich lava domes. Antimilos magmas seem to have escaped recharge filtering in the upper crust and prolonged stalling, which is the process that is probably responsible for the paucity of mafic eruptions in the rest of the Milos volcanic system. Large extensional structures offshore of Antimilos promote rapid ascent of mafic melts, inhibiting prolonged stalling and interaction with the arc crust. This model highlights the dominant role of the regional stress field in generating petrologically distinct suites in the marginal parts of some volcanic fields.</p

    Santorini volcano as a potential Martian analogue: the Balos Cove Basalts

    No full text
    Summarization: The interpretation of geologic processes on Mars from sparse meteorite, remote sensing and rover data is influenced by knowledge gained from well-characterized terrestrial analogues. This calls for detailed study of candidate terrestrial analogues and comparison of their observable features to those encountered on the surface of Mars. We evaluated the mineralogical, geochemical, and physical properties of the Balos cove basalts (BCB) from the island of Santorini and compared them to Martian meteorites, Mars rover surface measurements, and other verified Martian analogues obtained from the International Space Analogue Rockstore (ISAR). Twenty rock samples were collected from the Balos cove area based on their freshness, integrity, and basaltic appearance in the field. Optical microscopy of BCB revealed a pilotaxitic to trachytic texture, with olivine and clinopyroxene phenocrysts in a fine groundmass of olivine, clinopyroxene, plagioclase, magnetite, and devitrified glass. All major minerals show normal zoning, including calcic plagioclase (An 78–85 at the core and An 60–76 at the rim), augite (En 36-48 Wo 41-44 Fs 11–21 ), and olivine (Fo 74–88 ). The dominant bands in the infrared-attenuated total reflectance (IR-ATR) spectra from BCB can be assigned to olivine (~875 cm −1 ), calcic plagioclase (~1130 cm −1 ), and augite (~970 cm −1 ). The whole-rock chemical compositions and mineralogy of the BCB are similar to published analyses of typical olivine-phyric shergottites and basalts and basaltic materials analyzed in Gusev and Gale craters on Mars. BCB porosity is in the range of 7–15% and is similar to the porosities of the ISAR samples. Although no terrestrial rock is ever a perfect match to Martian compositions, the differences in mineralogy and geochemistry between BCB and some classes of Martian samples are relatively subtle and the basalts of Santorini are as close a match as other accepted Mars basalt analogues. The Santorini site offers excellent field logistics that, together with the petrology of the outcrop, makes it a valuable locality for testing and calibration deployments, field training, and other activities related to current and future Mars exploration.Παρουσιάστηκε στο: Icaru
    corecore