5 research outputs found

    The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort

    No full text
    The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The 'seat effective amplitude transmissibility' (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1-20 Hz at magnitudes of vibration from 0.2 to 1.6 ms-2 r.m.s. The 'measured seat dynamic discomfort' (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings.</p

    Equivalent comfort contours for vertical seat vibration: effect of vibration magnitude and backrest inclination

    No full text
    This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes in the range 0.016 to 2.0 ms^-2 r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0 degree (upright), 30, 60 and 90 degree. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60-degree and 90-degree backrest inclinations and 50% greater with a 30-degree backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions.Practitioner Summary: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel

    The vibration of inclined backrests: perception and discomfort of vibration applied normal to the back in the x-axis of the body

    No full text
    The vibration of backrests contributes to the discomfort of drivers and passengers. A frequency weighting exists for evaluating the vibration of vertical backrests but not for reclined backrests often used during travel. This experimental study was designed to determine how backrest inclination and the frequency of vibration influence perception thresholds and vibration discomfort when the vibration is applied normal to the back (i.e. fore-and-aft vibration when seated upright and vertical vibration when fully reclined). Twelve subjects experienced the vibration of a backrest (at each of the 11 preferred one-third octave centre frequencies in the range 2.5–25 Hz) at vibration magnitudes from the threshold of perception to 24 dB above threshold. Initially, absolute thresholds for the perception of vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). The method of magnitude estimation was then used to obtain judgements of vibration discomfort with each of the four backrest angles. Finally, the relative discomfort between the four backrest angles, and the principal locations for feeling vibration discomfort in the body, were determined. With all backrest inclinations, absolute thresholds for the perception of vibration acceleration were dependent on the frequency of vibration. As the backrest inclination became more horizontal, the thresholds increased at frequencies between 4 and 8 Hz. For all backrest inclinations, the rate of growth of discomfort with increasing magnitude of vibration was independent of the frequency of vibration, so the frequency-dependence of discomfort was similar over the range of magnitudes investigated (0.04–0.6 m s?2 rms). With an upright backrest, the discomfort caused by vibration acceleration tended to be greatest at frequencies less than about 8 Hz. With inclined backrests (at 30°, 60°, and 90°), the equivalent comfort contours were broadly similar to each other, with greatest discomfort caused by acceleration around 10 or 12.5 Hz. At frequencies from 4 to 8 Hz, 30–40 percent greater magnitudes of vibration were required with the three inclined backrests to cause discomfort equivalent to that caused by the upright backrest. It is concluded that with an upright backrest the frequency weighting Wc used in current standards is appropriate for predicting the discomfort caused by fore-and-aft backrest vibration. With inclined and horizontal backrests, a weighting similar to frequency weighting Wb (used to predict discomfort caused by vertical seat vibration) appears more appropriate

    Predicting discomfort from whole-body vertical vibration when sitting with an inclined backrest

    No full text
    Current methods for evaluating seat vibration to predict vibration discomfort assume the same frequency weightings and axis multiplying factors can be used at the seat surface and the backrest irrespective of the backrest inclination. This experimental study investigated the discomfort arising from whole-body vertical vibration when sitting on a rigid seat with no backrest and with a backrest inclined at 0? (upright), 30?, 60?, and 90? (recumbent). Within each of these five postures, 12 subjects judged the discomfort caused by vertical sinusoidal whole-body vibration (at frequencies from 1 to 20 Hz at magnitudes from 0.2 to 2.0 ms-2 r.m.s.) relative to the discomfort produced by a reference vibration (8 Hz at 0.4 ms-2 r.m.s.). With 8-Hz vertical vibration, the subjects also judged vibration discomfort with each backrest condition relative to the vibration discomfort with no backrest. The locations in the body where discomfort was experienced were determined for each frequency at two vibration magnitudes. Equivalent comfort contours were determined for the five conditions of the backrest and show how discomfort depends on the frequency of vibration, the presence of the backrest, and the backrest inclination. At frequencies greater than about 8 Hz, the backrest increased vibration discomfort, especially when inclined to 30?, 60?, or 90?, and there was greater discomfort at the head or neck. At frequencies around 5 and 6.3 Hz there was less vibration discomfort when sitting with an inclined backrest
    corecore