9 research outputs found

    Raman Scattering:From Structural Biology to Medical Applications

    Get PDF
    This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed

    An In Vivo Rat Study of Bioresorbable Mg-2Zn-2Ga Alloy Implants

    No full text
    In the present study, pins made from the novel Mg-2Zn-2Ga alloy were installed within the femoral bones of six Wistar rats. The level of bioresorption was assessed after 1, 3, and 6 months by radiography, histology, SEM, and EDX. Significant bioresorption was evident after 3 months, and complete dissolution of the pins occurred at 6 months after the installation. No pronounced gas cavities could be found at the pin installation sites throughout the postoperative period. The animals’ blood parameters showed no signs of inflammation or toxication. These findings are sufficiently encouraging to motivate further research to broaden the experimental coverage to increase the number of observed animals and to conduct tests involving other, larger animals

    High strength and ductility in a new Mg–Zn–Ga biocompatible alloy by drawing and rotary forging

    No full text
    A comparative study of the effect of drawing and rotary forging on the structure, mechanical and corrosion properties of a new biodegradable magnesium alloy Mg–2Zn–2Ga was carried out. The original 6 mm diameter bars obtained by hot extrusion were reduced to the diameters in the range 5.5–3.3 mm by drawing or rotary forging. Optical microscopy, scanning electron microscopy and EBSD grain orientation mapping were used to characterize the material microstructure. Tensile testing was performed to determine the mechanical properties. The optimum temperature for rotary forging and annealing after each drawing pass for defect-free bar production was found to be 300 °C. The combination of the highest strength and ductility was achieved in the 4.2 mm diameter drawn bar and is explained by the formation of numerous twin boundaries in the alloy structure. The 3.3 mm diameter bar obtained by drawing as well as the 5.5 mm diameter bar obtained by rotary forging showed a balance between high strength (260–310 MPa) and large elongation (9–12 %). The analysis of the stress-strain curves using Hollomon's equation was conducted. The hydrogen evolution test in Hanks' solution revealed that the drawn bars of diameters 4.2 and 5.2 mm, as well as the rotary forged bar of 5.5 mm possessed 3 times lower corrosion resistance reduced in comparison with the original 6 mm extruded bar. The 3.3 mm diameter drawn bar exhibited the lowest nominal corrosion rate of 0.11 mm/year that offers excellent opportunities for use in medical implants

    Siberian lidar station: instruments and results

    No full text
    The Siberian Lidar Station created at V.E. Zuev Institute of Atmospheric Optics and operating in Tomsk (56.5° N, 85.0° E) is a unique atmospheric observatory. It combines up-to-date instruments for remote laser and passive sounding for the study of aerosol and cloud fields, air temperature and humidity, and ozone and gaseous components of the ozone cycles. In addition to controlling a wide range of atmospheric parameters, the observatory allows simultaneous monitoring of the atmosphere throughout the valuable altitude range 0–75 km. In this paper, the instruments and results received at the Station are described

    Siberian lidar station: instruments and results

    No full text
    The Siberian Lidar Station created at V.E. Zuev Institute of Atmospheric Optics and operating in Tomsk (56.5° N, 85.0° E) is a unique atmospheric observatory. It combines up-to-date instruments for remote laser and passive sounding for the study of aerosol and cloud fields, air temperature and humidity, and ozone and gaseous components of the ozone cycles. In addition to controlling a wide range of atmospheric parameters, the observatory allows simultaneous monitoring of the atmosphere throughout the valuable altitude range 0–75 km. In this paper, the instruments and results received at the Station are described

    Ferritin self-assembly, structure, function, and biotechnological applications

    No full text
    Ferritin is a vital protein complex responsible for storing iron in almost all living organisms. It plays a crucial role in various metabolic pathways, inflammation processes, stress response, and pathogenesis of cancer and neurodegenerative diseases. In this review we discuss the role of ferritin in diseases, cellular iron regulation, its structural features, and its role in biotechnology. We also show that molecular mechanisms of ferritin self-assembly are key for a number of biotechnological and pharmaceutical applications. The assembly pathways strongly depend on the interface context of ferritin monomers and the stability of its different intermediate oligomers. To date, several schemes of self-assembly kinetics have been proposed. Here, we compare different self-assembly mechanisms and discuss the possibility of self-assembly control by switching between deadlock intermediate states

    Impact of pathogen reduction methods on immunological properties of the COVID-19 convalescent plasma

    No full text
    Background and objectives: COVID-19 convalescent plasma is an experimental treatment against SARS-CoV-2. The aim of this study is to assess the impact of different pathogen reduction methods on the levels and virus neutralizing activity of the specific antibodies against SARS-CoV2 in convalescent plasma. Materials and methods: A total of 140 plasma doses collected by plasmapheresis from COVID-19 convalescent donors were subjected to pathogen reduction by three methods: methylene blue (M)/visible light, riboflavin (R)/UVB and amotosalen (A)/UVA. To conduct a paired comparison, individual plasma doses were divided into 2 samples that were subjected to one of these methods. The titres of SARS-CoV2 neutralizing antibodies (NtAbs) and levels of specific immunoglobulins to RBD, S- and N-proteins of SARS-CoV-2 were measured before and after pathogen reduction. Results: The methods reduced NtAbs titres differently: among units with the initial titre 80 or above, 81% of units remained unchanged and 19% decreased by one step after methylene blue; 60% were unchanged and 40% decreased by one step after amotosalen; after riboflavin 43% were unchanged and 50% (7%, respectively) had a one-step (two-step, respectively) decrease. Paired two-sample comparisons (M vs. A, M vs. R and A vs. R) revealed that the largest statistically significant decrease in quantity and activity of the specific antibodies resulted from the riboflavin treatment. Conclusion: Pathogen reduction with methylene blue or with amotosalen provides the greater likelihood of preserving the immunological properties of the COVID-19 convalescent plasma compared to riboflavin
    corecore