93 research outputs found
Spin-Wave Lifetimes Throughout the Brillouin Zone
We use a neutron spin-echo method with eV resolution to determine the
lifetimes of spin waves in the prototypical antiferromagnet MnF over the
entire Brillouin zone. A theory based on the interaction of magnons with
longitudinal spin fluctuations provides an excellent, parameter-free
description of the data, except at the lowest momenta and temperatures. This is
surprising, given the prominence of alternative theories based on magnon-magnon
interactions in the literature. The results and technique open up a new avenue
for the investigation of fundamental concepts in magnetism. The technique also
allows measurement of the lifetimes of other elementary excitations (such as
lattice vibrations) throughout the Brillouin zone.Comment: 12 pages, 4 figure
Energy Gaps and Kohn Anomalies in Elemental Superconductors
The momentum and temperature dependence of the lifetimes of acoustic phonons
in the elemental superconductors Pb and Nb was determined by resonant spin-echo
spectroscopy with neutrons. In both elements, the superconducting energy gap
extracted from these measurements was found to converge with sharp anomalies
originating from Fermi-surface nesting (Kohn anomalies) at low temperatures.
The results indicate electron many-body correlations beyond the standard
theoretical framework for conventional superconductivity. A possible mechanism
is the interplay between superconductivity and spin- or charge-density-wave
fluctuations, which may induce dynamical nesting of the Fermi surface
Large enhancement of the thermopower in NaCoO at high Na doping
Research on the oxide perovskites has uncovered electronic properties that
are strikingly enhanced compared with those in conventional metals. Examples
are the high critical temperatures of the cuprate superconductors and the
colossal magnetoresistance in the manganites. The conducting layered cobaltate
displays several interesting electronic phases as is varied
including water-induced superconductivity and an insulating state that is
destroyed by field. Initial measurements showed that, in the as-grown
composition, displays moderately large thermopower and
conductivity . However, the prospects for thermoelectric cooling
applications faded when the figure of merit was found to be small at this
composition (0.60.7). Here we report that, in the poorly-explored
high-doping region 0.75, undergoes an even steeper enhancement. At the
critical doping 0.85, (at 80 K) reaches values 40 times
larger than in the as-grown crystals. We discuss prospects for low-temperature
thermoelectric applications.Comment: 6 pages, 7 figure
Synthesis, Characterization, and Magnetic Properties of gamma-NaxCoO2 (0.70 < x <0.84)
Powder NaCoO () samples were synthesized and
characterized carefully by X-ray diffraction analysis, inductive-coupled plasma
atomic emission spectroscopy, and redox titration. It was proved that
-NaCoO is formed only in the narrow range of . Nevertheless, the magnetic properties depend strongly on . We
found, for the first time, two characteristic features in the magnetic
susceptibility of NaCoO, a sharp peak at K and an
anomaly at K, as well as the transition at K and the broad
maximum at K which had already been reported. A type of weak
ferromagnetic transition seems to occur at . The transition at ,
which is believed to be caused by spin density wave formation, was observed
clearly for with constant and independent of .
On the other hand, ferromagnetic moment varies systematically depending on .
These facts suggest the occurrence of a phase separation at the microscopic
level, such as the separation into Na-rich and Na-poor domains due to the
segregation of Na ions. The magnetic phase diagram and transition mechanism
proposed previously should be reconsidered.Comment: 4 pages (2 figures included) and 2 extra figures (gif), to be
published in J. Phys. Soc. Jpn. 73 (8) with possible minor revision
Thermal and Electrical Properties of gamma-NaxCoO2 (0.70 < x < 0.78)
We have performed specific heat and electric resistivity measurements of
NaCoO (-0.78). Two anomalies have been observed in the
specific heat data for , corresponding to magnetic transitions at
K and K reported previously. In the electrical
resistivity, a steep decrease at and a bending-like variation at
(=120K for ) have been observed. Moreover, we have investigated
the -dependence of these parameters in detail. The physical properties of
this system are very sensitive to , and the inconsistent results of previous
reports can be explained by a small difference in . Furthermore, for a
higher value, a phase separation into Na-rich and Na-poor domains occurs as
we previously proposed, while for a lower value, from characteristic
behaviors of the specific heat and the electrical resistivity at the
low-temperature region, the system is expected to be in the vicinity of the
magnetic instability which virtually exists below .Comment: 4 pages (3 figures included) and an extra figure (gif), to be
published in J. Phys. Soc. Jpn. 73 (9) with possible minor revision
Precise Control of Band Filling in NaxCoO2
Electronic properties of the sodium cobaltate NaxCoO2 are systematically
studied through a precise control of band filling. Resistivity, magnetic
susceptibility and specific heat measurements are carried out on a series of
high-quality polycrystalline samples prepared at 200 C with Na content in a
wide range of 0.35 =< x =< 0.70. It is found that dramatic changes in
electronic properties take place at a critical Na concentration x* that lies
between 0.58 and 0.59, which separates a Pauli paramagnetic and a Curie-Weiss
metals. It is suggested that at x* the Fermi level touches the bottom of the
a1g band at the gamma point, leading to a crucial change in the density of
states across x* and the emergence of a small electron pocket around the gamma
point for x > x*.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp
A critical assessment of the pairing symmetry in NaxCoO2.yH2O
We examine each of the symmetry-allowed pairing states of NaxCoO2.yH2O and
compare their properties to what is experimentally and theoretically
established about the compound. In this way, we can eliminate the vast majority
of states that are technically allowed and narrow the field to two, both of
f-wave type states. We discuss the expected features of these states and
suggest experiments that can distinguish between them. We also discuss
odd-frequency gap pairing and how it relates to available experimental
evidence
Bulk antiferromagnetism in single crystals
Susceptibility, specific heat, and muon spin rotation measurements on
high-quality single crystals of have revealed bulk
antiferromagnetism with N\'{e}el temperature K and an
ordered moment perpendicular to the layers. The magnetic order
encompasses nearly 100% of the crystal volume. The susceptibility exhibits a
broad peak around 30 K, characteristic of two-dimensional antiferromagnetic
fluctuations. The in-plane resistivity is metallic at high temperatures and
exhibits a minimum at .Comment: published versio
Programs and processes for advancing pediatric acute kidney support therapy in hospitalized and critically ill children: A report from the 26th Acute Disease Quality Initiative (ADQI) consensus conference
Pediatric acute kidney support therapy (paKST) programs aim to reliably provide safe, effective, and timely extracorporeal supportive care for acutely and critically ill pediatric patients with acute kidney injury (AKI), fluid and electrolyte derangements, and/or toxin accumulation with a goal of improving both hospital-based and lifelong outcomes. Little is known about optimal ways to configure paKST teams and programs, pediatric-specific aspects of delivering high-quality paKST, strategies for transitioning from acute continuous modes of paKST to facilitate rehabilitation, or providing effective short- and long-term follow-up. As part of the 26th Acute Disease Quality Initiative Conference, the first to focus on a pediatric population, we summarize here the current state of knowledge in paKST programs and technology, identify key knowledge gaps in the field, and propose a framework for current best practices and future research in paKST
- …