53 research outputs found

    Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe

    Get PDF
    Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown−no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen−virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations

    Klimawandel und Allergien.

    No full text
    In Europe, 40 % of the population are already affected by allergic symptoms. Airborne pollen and fungal spores are among the most common allergy triggers. Due to climate change, pollen and spores increase not only in quantity but also change in quality with regard to their allergenicity. In addition, new pollen types will occur due to changes in ecosystems and vegetation zones. In allergy research, inter- and transdisciplinary cooperation between economy, environmental science and medicine are essential

    Der Einfluss des Klimawandels auf die Allergenexposition: Herausforderungen für die Versorgung von allergischen Erkrankungen.

    No full text

    Unraveling and mapping the mechanisms for near-surface microstructure evolution in CuNi alloys under sliding

    Get PDF
    The origin of friction and wear in polycrystalline materials is intimately connected with their microstructural response to interfacial stresses. Although many mechanisms that govern microstructure evolution in sliding contacts are generally understood, it is still a challenge to ascertain which mechanisms matter under what conditions, which limits the development of tailor-made microstructures for reducing friction and wear. Here, we shed light on the circumstances that promote plastic deformation and surface damage by studying several FCC CuNi alloys subjected to sliding with molecular dynamics simulations featuring tens of millions of atoms. By analyzing the depth- and time-dependent evolution of the grain size, twinning, shear, and the stresses in the aggregate, we derive a deformation mechanism map for CuNi alloys. We verify the predictions of this map against focused ion beam images of the near-surface regions of CuNi alloys that were experimentally subjected to similar loading conditions. Our results may serve as a tool for finding optimum material compositions within a specified operating range
    corecore