3 research outputs found

    Recombinant Lloviu virus as a tool to study viral replication and host responses

    Get PDF
    Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness

    Labeling Ebola Virus with a Self-Splicing Fluorescent Reporter

    No full text
    Inteins (intervening proteins) are polypeptides that interrupt the sequence of other proteins and remove themselves through protein splicing. In this intein-catalyzed reaction, the two peptide bonds surrounding the intein are rearranged to release the intein from the flanking protein sequences, termed N- and C-exteins, which are concurrently joined by a peptide bond. Because of this unique functionality, inteins have proven exceptionally useful in protein engineering. Previous work has demonstrated that heterologous proteins can be inserted within an intein, with both the intein and inserted protein retaining function, allowing for intein-containing genes to coexpress additional coding sequences. Here, we show that a fluorescent protein (ZsGreen) can be inserted within the Pyrococcus horikoshii RadA intein, with the hybrid protein (ZsG-Int) maintaining fluorescence and splicing capability. We used this system to create a recombinant Ebola virus expressing a fluorescent protein. We first tested multiple potential insertion sites for ZsG-Int within individual Ebola virus proteins, identifying a site within the VP30 gene that facilitated efficient intein splicing in mammalian cells while also preserving VP30 function. Next, we successfully rescued a virus containing the ZsG-Int-VP30 fusion protein, which displayed fluorescence in the infected cells. We thus report a new intein-based application for adding reporters to systems without the need to add additional genes. Further, this work highlights a novel reporter design, whereby the reporter is only made if the protein of interest is translated and does not remain fused to the protein of interest
    corecore