114 research outputs found

    An Analysis of Publication Venues for Automatic Differentiation Research

    Get PDF
    We present the results of our analysis of publication venues for papers on automatic differentiation (AD), covering academic journals and conference proceedings. Our data are collected from the AD publications database maintained by the autodiff.org community website. The database is purpose-built for the AD field and is expanding via submissions by AD researchers. Therefore, it provides a relatively noise-free list of publications relating to the field. However, it does include noise in the form of variant spellings of journal and conference names. We handle this by manually correcting and merging these variants under the official names of corresponding venues. We also share the raw data we get after these corrections.Comment: 6 pages, 3 figure

    Automatic Differentiation of Algorithms for Machine Learning

    Get PDF
    Automatic differentiation---the mechanical transformation of numeric computer programs to calculate derivatives efficiently and accurately---dates to the origin of the computer age. Reverse mode automatic differentiation both antedates and generalizes the method of backwards propagation of errors used in machine learning. Despite this, practitioners in a variety of fields, including machine learning, have been little influenced by automatic differentiation, and make scant use of available tools. Here we review the technique of automatic differentiation, describe its two main modes, and explain how it can benefit machine learning practitioners. To reach the widest possible audience our treatment assumes only elementary differential calculus, and does not assume any knowledge of linear algebra.Comment: 7 pages, 1 figur

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure

    DiffSharp: Automatic Differentiation Library

    Get PDF
    In this paper we introduce DiffSharp, an automatic differentiation (AD) library designed with machine learning in mind. AD is a family of techniques that evaluate derivatives at machine precision with only a small constant factor of overhead, by systematically applying the chain rule of calculus at the elementary operator level. DiffSharp aims to make an extensive array of AD techniques available, in convenient form, to the machine learning community. These including arbitrary nesting of forward/reverse AD operations, AD with linear algebra primitives, and a functional API that emphasizes the use of higher-order functions and composition. The library exposes this functionality through an API that provides gradients, Hessians, Jacobians, directional derivatives, and matrix-free Hessian- and Jacobian-vector products. Bearing the performance requirements of the latest machine learning techniques in mind, the underlying computations are run through a high-performance BLAS/LAPACK backend, using OpenBLAS by default. GPU support is currently being implemented

    DiffSharp: An AD Library for .NET Languages

    Get PDF
    DiffSharp is an algorithmic differentiation or automatic differentiation (AD) library for the .NET ecosystem, which is targeted by the C# and F# languages, among others. The library has been designed with machine learning applications in mind, allowing very succinct implementations of models and optimization routines. DiffSharp is implemented in F# and exposes forward and reverse AD operators as general nestable higher-order functions, usable by any .NET language. It provides high-performance linear algebra primitives---scalars, vectors, and matrices, with a generalization to tensors underway---that are fully supported by all the AD operators, and which use a BLAS/LAPACK backend via the highly optimized OpenBLAS library. DiffSharp currently uses operator overloading, but we are developing a transformation-based version of the library using F#'s "code quotation" metaprogramming facility. Work on a CUDA-based GPU backend is also underway

    Tricks from Deep Learning

    Get PDF
    The deep learning community has devised a diverse set of methods to make gradient optimization, using large datasets, of large and highly complex models with deeply cascaded nonlinearities, practical. Taken as a whole, these methods constitute a breakthrough, allowing computational structures which are quite wide, very deep, and with an enormous number and variety of free parameters to be effectively optimized. The result now dominates much of practical machine learning, with applications in machine translation, computer vision, and speech recognition. Many of these methods, viewed through the lens of algorithmic differentiation (AD), can be seen as either addressing issues with the gradient itself, or finding ways of achieving increased efficiency using tricks that are AD-related, but not provided by current AD systems. The goal of this paper is to explain not just those methods of most relevance to AD, but also the technical constraints and mindset which led to their discovery. After explaining this context, we present a "laundry list" of methods developed by the deep learning community. Two of these are discussed in further mathematical detail: a way to dramatically reduce the size of the tape when performing reverse-mode AD on a (theoretically) time-reversible process like an ODE integrator; and a new mathematical insight that allows for the implementation of a stochastic Newton's method

    Tricks from Deep Learning

    Get PDF
    The deep learning community has devised a diverse set of methods to make gradient optimization, using large datasets, of large and highly complex models with deeply cascaded nonlinearities, practical. Taken as a whole, these methods constitute a breakthrough, allowing computational structures which are quite wide, very deep, and with an enormous number and variety of free parameters to be effectively optimized. The result now dominates much of practical machine learning, with applications in machine translation, computer vision, and speech recognition. Many of these methods, viewed through the lens of algorithmic differentiation (AD), can be seen as either addressing issues with the gradient itself, or finding ways of achieving increased efficiency using tricks that are AD-related, but not provided by current AD systems. The goal of this paper is to explain not just those methods of most relevance to AD, but also the technical constraints and mindset which led to their discovery. After explaining this context, we present a "laundry list" of methods developed by the deep learning community. Two of these are discussed in further mathematical detail: a way to dramatically reduce the size of the tape when performing reverse-mode AD on a (theoretically) time-reversible process like an ODE integrator; and a new mathematical insight that allows for the implementation of a stochastic Newton's method

    DiffSharp: An AD Library for .NET Languages

    Get PDF
    DiffSharp is an algorithmic differentiation or automatic differentiation (AD) library for the .NET ecosystem, which is targeted by the C# and F# languages, among others. The library has been designed with machine learning applications in mind, allowing very succinct implementations of models and optimization routines. DiffSharp is implemented in F# and exposes forward and reverse AD operators as general nestable higher-order functions, usable by any .NET language. It provides high-performance linear algebra primitives---scalars, vectors, and matrices, with a generalization to tensors underway---that are fully supported by all the AD operators, and which use a BLAS/LAPACK backend via the highly optimized OpenBLAS library. DiffSharp currently uses operator overloading, but we are developing a transformation-based version of the library using F#'s "code quotation" metaprogramming facility. Work on a CUDA-based GPU backend is also underway

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD) is a technique for calculating derivatives of numeric functions expressed as computer programs efficiently and accurately, used in fields such as computational fluid dynamics, nuclear engineering, and atmospheric sciences. Despite its advantages and use in other fields, machine learning practitioners have been little influenced by AD and make scant use of available tools. We survey the intersection of AD and machine learning, cover applications where AD has the potential to make a big impact, and report on some recent developments in the adoption of this technique. We aim to dispel some misconceptions that we contend have impeded the use of AD within the machine learning community
    • …
    corecore