
ar
X

iv
:1

51
1.

07
72

7v
2

 [
cs

.M
S]

 2
6

N
ov

 2
01

5
Journal of Machine Learning Research 0 (2015) 0-00 Submitted 11/15; Published 0/00

DiffSharp: Automatic Differentiation Library

Atılım Güneş Baydin atilimgunes.baydin@nuim.ie

Barak A. Pearlmutter barak@cs.nuim.ie

Department of Computer Science
National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland

Jeffrey Mark Siskind qobi@purdue.edu

School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907, USA

Editor:

Abstract

In this paper we introduce DiffSharp, an automatic differentiation (AD) library designed
with machine learning in mind. AD is a family of techniques that evaluate derivatives at
machine precision with only a small constant factor of overhead, by systematically apply-
ing the chain rule of calculus at the elementary operator level. DiffSharp aims to make
an extensive array of AD techniques available, in convenient form, to the machine learning
community. These including arbitrary nesting of forward/reverse AD operations, AD with
linear algebra primitives, and a functional API that emphasizes the use of higher-order
functions and composition. The library exposes this functionality through an API that
provides gradients, Hessians, Jacobians, directional derivatives, and matrix-free Hessian-
and Jacobian-vector products. Bearing the performance requirements of the latest ma-
chine learning techniques in mind, the underlying computations are run through a high-
performance BLAS/LAPACK backend, using OpenBLAS by default. GPU support is
currently being implemented.

Keywords: automatic differentiation, backpropagation, optimization, gradient methods

1. Introduction

Automatic differentiation (AD) is a subfield of scientific computing and specializes in cal-
culating derivatives of functions expressed as computer programs (Griewank and Walther,
2008). The associativity of the chain rule of calculus leads to the two main modes of AD:
the forward (or tangent linear) mode accumulates derivatives forward from a given indepen-
dent variable, while the reverse (or adjoint or cotangent linear) mode propagates derivatives
backward from a given dependent variable.

AD techniques have enjoyed widespread success in computation-intensive fields such as
computational fluid dynamics, atmospheric sciences, and engineering design optimization
(Corliss et al., 2002). The machine learning community’s acquaintance with AD is mostly
through the backpropagation algorithm for training feedforward neural networks, which is
a special case of reverse mode AD (Werbos, 2006; Griewank, 2012).

Following a period of underutilization of general AD in machine learning, state-of-
the-art machine learning frameworks increasingly provide differentiation capability in one
way or another. Examples include Theano (Bastien et al., 2012) and the recently released

c©2015 Atılım Güneş Baydin and Barak A. Pearlmutter.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297024706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1511.07727v2

Baydin and Pearlmutter

torch-autograd package for Torch (Collobert et al., 2011). Because the prevalent use of
derivatives in machine learning is for the optimization of scalar-valued objectives, practi-
cally all of these frameworks have been restricted to reverse AD. But there is more to AD
than the reverse mode.

In DiffSharp, we are introducing a framework that brings together AD with linear alge-
bra primitives, arbitrary nesting of the forward/reverse modes, and a functional differentia-
tion API that emphasizes the use of higher-order functions and composition. For a detailed
explanation of the forward and reverse modes, the difference of AD from numerical1 and
symbolic2 differentiation, and the use of AD in machine learning, we refer the readers to
Baydin et al. (2015).

2. Overview of Features, Implementation, and API

Table 1 gives an overview of the differentiation API in DiffSharp, of which extensive docu-
mentation can be found online.3

The library is based on AD-enabled linear algebra primitives4 that automatically com-
pute any tangent/adjoint values associated with the forward/reverse differentiation of any
forward algorithm implemented in the regular way. Programs can use the full expressivity
of the language and freely make use of loops and control flow statements. The underlying
computations are run on a linear algebra backend. The default backend distributed with
the library uses OpenBLAS (Wang et al., 2013) for BLAS/LAPACK operations, supple-
mented with custom parallel implementations for non-BLAS operations such as Hadamard
products, elementwise function mapping, and matrix transposition.

DiffSharp supports arbitrary nesting of forward/reverse AD instantiations using tag-
ging (Siskind and Pearlmutter, 2008; Pearlmutter and Siskind, 2008) to avoid a class of
bugs known as perturbation confusion (Siskind and Pearlmutter, 2005). Beyond the suc-
cinctness it provides for implementing compositional models, this capability is useful for
hyperparameter optimization, as it can provide exact “hypergradients” of the validation
loss with respect to hyperparameters of training, and allow “gradient-based optimization of
gradient-based optimization” (Maclaurin et al., 2015).

Given our focus on higher-order functions and composition of differentiation operations,
we implement the library in the F# language5, an open source, cross-platform functional
language with origins in ML. In addition to being a modern functional language, F# has
“non-pure” constructs for imperative programming and reflection, which give us more free-
dom for implementing features such as transformation-based AD, compared with, for ex-
ample, purely functional Haskell (Siskind and Pearlmutter, 2008).

Running on the .NET framework, DiffSharp can be used with F#, C#, and the other
CLI languages. The .NET framework is now open source and cross-platform, like the .NET
Core project6, which supports GNU/Linux, Mac OS X, and Microsoft Windows. We test
each release of our code on Debian GNU/Linux and Microsoft Windows 10.

1. Finite difference approximation of derivatives, with poor performance and approximation errors.
2. Symbolic manipulation of expressions, which has problems with expression swell and control flow.
3. http://diffsharp.github.io/DiffSharp/api-overview.html
4. Scalars, vectors, and matrices, with a plan for generalizing these to tensors as in Torch.
5. http://fsharp.org/
6. http://dotnet.github.io/

2

http://diffsharp.github.io/DiffSharp/api-overview.html
http://fsharp.org/
http://dotnet.github.io/

DiffSharp: Automatic Differentiation Library

Table 1: The differentiation API for R → R, R
n → R, and R

n → R
m functions pro-

vided by the AD, numerical, and symbolic differentiation modules. X: exact; A:
approximate; F: forward AD; R: reverse AD; F-R: reverse-on-forward AD; R-F:
forward-on-reverse AD; F/R: forward AD if n ≤ m, reverse AD if n > m.

Op. Value Type signature AD Num. Sym.

f : R → R diff f ′ (R → R) → R → R X, F A X
diff’ (f, f ′) (R → R) → R → (R× R) X, F A X
diff2 f ′′ (R → R) → R → R X, F A X
diff2’ (f, f ′′) (R → R) → R → (R× R) X, F A X
diff2’’ (f, f ′, f ′′) (R → R) → R → (R× R× R) X, F A X
diffn f(n) N → (R → R) → R → R X, F X
diffn’ (f, f(n)) N → (R → R) → R → (R× R) X, F X

f : Rn → R grad ∇f (Rn → R) → Rn → Rn X, R A X
grad’ (f,∇f) (Rn → R) → Rn → (R× Rn) X, R A X
gradv ∇f · v (Rn → R) → Rn → Rn → R X, F A
gradv’ (f,∇f · v) (Rn → R) → Rn → Rn → (R× R) X, F A
hessian Hf (Rn → R) → Rn → Rn×n X, R-F A X
hessian’ (f,Hf) (Rn → R) → R

n → (R× R
n×n) X, R-F A X

hessianv Hfv (Rn → R) → R
n → R

n → R
n X, F-R A

hessianv’ (f,Hfv) (Rn → R) → Rn → Rn → (R× Rn) X, F-R A
gradhessian (∇f,Hf) (Rn → R) → R

n → (Rn × R
n×n) X, R-F A X

gradhessian’ (f,∇f,Hf) (Rn → R) → Rn → (R× Rn × Rn×n) X, R-F A X
gradhessianv (∇f · v,Hfv) (Rn → R) → R

n → R
n → (R× R

n) X, F-R A
gradhessianv’ (f,∇f · v,Hfv) (Rn → R) → R

n → R
n → (R× R× R

n) X, F-R A
laplacian tr(Hf) (Rn → R) → Rn → R X, R-F A X
laplacian’ (f, tr(Hf)) (Rn → R) → Rn → (R× R) X, R-F A X

f : Rn → R
m jacobian Jf (Rn → R

m) → R
n → R

m×n X, F/R A X
jacobian’ (f ,Jf) (Rn → Rm) → Rn → (Rm × Rm×n) X, F/R A X
jacobianv Jfv (Rn → Rm) → Rn → Rn → Rm X, F A
jacobianv’ (f ,Jfv) (Rn → Rm) → Rn → Rn → (Rm × Rm) X, F A
jacobianT JT

f
(Rn → Rm) → Rn → Rn×m X, F/R A X

jacobianT’ (f ,JT
f
) (Rn → R

m) → R
n → (Rm × R

n×m) X, F/R A X
jacobianTv JT

f
v (Rn → Rm) → Rn → Rm → Rn X, R

jacobianTv’ (f ,JT
f
v) (Rn → R

m) → R
n → R

m → (Rm × R
n) X, R

jacobianTv’’ (f ,JT
f
(·)) (Rn → Rm) → Rn → (Rm × (Rm → Rn)) X, R

curl ∇× f (R3 → R3) → R3 → R3 X, F A X
curl’ (f ,∇× f) (R3 → R3) → R3 → (R3 × R3) X, F A X
div ∇ · f (Rn → Rn) → Rn → R X, F A X
div’ (f ,∇ · f) (Rn → Rn) → Rn → (Rn × R) X, F A X
curldiv (∇× f ,∇ · f) (R3 → R3) → R3 → (R3 × R) X, F A X
curldiv’ (f ,∇× f ,∇ · f) (R3 → R

3) → R
3 → (R3 × R

3 × R) X, F A X

3. Using the Library: Examples

We are curating a growing collection of code and tutorials that use AD for machine learn-
ing applications.7 Examples include gradient-based optimization algorithms, clustering,
Hamiltonian Markov Chain Monte Carlo, and various neural network architectures.

4. Benchmarks

A major advantage of AD is its bounded overhead when calculating derivatives. When eval-
uating the gradient of a scalar-valued function with the reverse mode, the operation count
of the gradient is guaranteed to be only a small constant multiple, ωr, of that of the original

7. http://diffsharp.github.io/DiffSharp/

3

http://diffsharp.github.io/DiffSharp/

Baydin and Pearlmutter

0 100 200 300 400 500

0
2

4
6

8

n

ω
r
(n
)

Figure 1: Reverse AD overhead ωr(n) for grad as a function of the number of independent
variables n for the Helmholtz energy function.

forward function.8 Typically, the constant ωr ≤ 3 and this is known as the cheap gradient
principle (Griewank and Walther, 2008; Griewank, 2012). We provide benchmarking code9

for estimating ωr as the ratio of evaluation times, for the Helmholtz energy function used
in the AD literature for this purpose (Figure 1, where ωr → 2 as n → ∞).

Similar to ωr above for grad, we provide a command line benchmarking tool for reporting
the overhead factors for the full array of operations in the API.10

5. Roadmap and Conclusions

AD tools can be implemented in two main ways: source transformation and operator over-
loading. DiffSharp currently uses the latter with custom linear algebra primitives. An
important feature we are working on is to use the “code quotations” meta-programming
facility11 in F# (Syme, 2006) for implementing a transformation-based AD where the res-
olution of nesting will be moved from runtime to compile time, resulting in significant
performance gains and simplified user code.

We are also working on a GPU backend as an alternative to the default OpenBLAS
backend, based on CUDA (Nickolls et al., 2008). Lastly, we are planning to implement
advanced techniques for exploiting sparsity in linear algebra operations, using graph coloring
and matrix compression techniques already developed in the AD literature (Varnik, 2011;
Walther, 2012).

Acknowledgments

This work was supported in part by Science Foundation Ireland grant 09/IN.1/I2637 and
US Army Research Laboratory Cooperative Agreement Number W911NF-10-2-0060.

8. In general, for a function f : Rn
→ R

m, if we denote the operation count to evaluate the original function
ops(f), we need n ωf ops(f) to evaluate the full Jacobian J ∈ R

m×n with forward AD and m ωr ops(f)
with reverse AD.

9. http://diffsharp.github.io/DiffSharp/examples-helmholtzenergyfunction.html
10. http://diffsharp.github.io/DiffSharp/benchmarks.html
11. Permitting the capture of type-checked expressions and effectively allowing compiler extensions.

4

http://diffsharp.github.io/DiffSharp/examples-helmholtzenergyfunction.html
http://diffsharp.github.io/DiffSharp/benchmarks.html

DiffSharp: Automatic Differentiation Library

References

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard,
and Y. Bengio. Theano: New features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation
in machine learning: A survey. arXiv preprint arXiv:1502.05767, 2015.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A MATLAB-like environment for
machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.

G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann. Automatic Differentiation
of Algorithms: From Simulation to Optimization. Computer and Information Science.
Springer, New York, NY, 2002. doi: 10.1007/978-1-4613-0075-5.

A. Griewank. Who invented the reverse mode of differentiation? Documenta Mathematica,
Extra Volume ISMP:389–400, 2012.

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Society for Industrial and Applied Mathematics, Philadelphia,
2008. doi: 10.1137/1.9780898717761.

D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. arXiv preprint arXiv:1502.03492, 2015.

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with
CUDA. Queue, 6(2):40–53, 2008.

B. A. Pearlmutter and J. M. Siskind. Reverse-mode AD in a functional framework: Lambda
the ultimate backpropagator. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 30(2):7, 2008.

J. M. Siskind and B. A. Pearlmutter. Perturbation confusion and referential transparency:
Correct functional implementation of forward-mode AD. In 17th International Workshop
on Implementation and Application of Functional Languages (IFL2005), 2005.

J. M. Siskind and B. A. Pearlmutter. Nesting forward-mode AD in a functional framework.
Higher-Order and Symbolic Computation, 21(4):361–376, 2008.

D. Syme. Leveraging .NET meta-programming components from F#: Integrated queries
and interoperable heterogeneous execution. In 2006 Workshop on ML. ACM, 2006.

E. Varnik. Exploitation of structural sparsity in algorithmic differentiation. PhD thesis,
Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 2011.

A. Walther. On the efficient computation of sparsity patterns for Hessians. In Recent
Advances in Algorithmic Differentiation, pages 139–149. Springer, 2012.

Q. Wang, X. Zhang, Y. Zhang, and Q. Yi. AUGEM: Automatically generate high perfor-
mance dense linear algebra kernels on x86 CPUs. In International Conference on High
Performance Computing, Networking, Storage and Analysis, page 25. ACM, 2013.

P. J. Werbos. Backwards differentiation in AD and neural nets: Past links and new op-
portunities. In Automatic Differentiation: Applications, Theory, and Implementations,
pages 15–34. Springer, 2006. URL http://www.werbos.com/AD2004.pdf.

5

http://www.werbos.com/AD2004.pdf

	1 Introduction
	2 Overview of Features, Implementation, and API
	3 Using the Library: Examples
	4 Benchmarks
	5 Roadmap and Conclusions

