5 research outputs found

    Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background The roe deer, Capreolus sp., is one of the most widespread meso-mammals of Palearctic distribution, and includes two species, the European roe deer, C. capreolus inhabiting mainly Europe, and the Siberian roe deer, C. pygargus, distributed throughout continental Asia. Although there are a number of genetic studies concerning European roe deer, the Siberian roe deer has been studied less, and none of these studies use microsatellite markers. Natural processes have led to genetic structuring in wild populations. To understand how these factors have affected genetic structure and connectivity of Siberian roe deer, we investigated variability at 12 microsatellite loci for Siberian roe deer from ten localities in Asia. Results Moderate levels of genetic diversity (H E = 0.522 to 0.628) were found in all populations except in Jeju Island, South Korea, where the diversity was lowest (H E = 0.386). Western populations showed relatively low genetic diversity and higher degrees of genetic differentiation compared with eastern populations (mean Ar = 3.54 (east), 2.81 (west), mean F ST = 0.122). Bayesian-based clustering analysis revealed the existence of three genetically distinct groups (clusters) for Siberian roe deer, which comprise of the Southeastern group (Mainland Korea, Russian Far East, Trans-Baikal region and Northern part of Mongolia), Northwestern group (Western Siberia and Ural in Russia) and Jeju Island population. Genetic analyses including AMOVA (F RT = 0.200), Barrier and PCA also supported genetic differentiation among regions separated primarily by major mountain ridges, suggesting that mountains played a role in the genetic differentiation of Siberian roe deer. On the other hand, genetic evidence also suggests an ongoing migration that may facilitate genetic admixture at the border areas between two groups. Conclusions Our results reveal an apparent pattern of genetic differentiation among populations inhabiting Asia, showing moderate levels of genetic diversity with an east-west gradient. The results suggest at least three distinct management units of roe deer in continental Asia, although genetic admixture is evident in some border areas. The insights obtained from this study shed light on management of Siberian roe deer in Asia and may be applied in conservation of local populations of Siberian roe deer

    Phylogenetic analysis of a region of mitochondrial cox-1 as a DNA barcode marker sequence of Gazella subgutturosa (Goitered gazelle) in Mongolia

    No full text
    Gazella subgutturosa, a vulnerable species, is threatened by illegal hunting for meat and sport. The mitochondrial cytochrome c oxidase subunit 1 gene (cox-1) is used as a DNA marker to distinguish mammalian species for the investigation of illegal hunting. In this study, we sequenced a part of the cox-1 gene (709 bp) of six Mongolian G. subgutturosa individuals. Our DNA sequences were clustered in a clade of Gazella which is distinct from other clades of mammalian species in the phylogenetic tree. Our findings suggest that DNA sequences can be useful in the investigation of illegal hunting

    Additional file 1: of Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia

    No full text
    Table S1. Genetic characteristics of 12 microsatellite loci for Siberian roe deer from seven geographic regions in Asia. See Fig. 4 for sampling regions. Table S2: Source information and characteristics of 12 microsatellite markers obtained from cross-species amplification. Table S3: Wilcoxon signed rank test to assess differences in allelic richness (Ar) and expected heterozygosity that are corrected by small sample sizes (UHE) (one-tailed p-value). Figure S1: Bar graph of allelic diversity (Ar) and expected heterozygosity that are corrected by small sample sizes (UHE) in eight Siberian roe deer population. Table S4: Differentiation among three regions (cluster) of Siberian roe deer estimated by pairwise R ST, mean pR ST and F ST values per locus and multilocus
    corecore