9,800 research outputs found

    High temperature materials study

    Get PDF
    High temperature operating electronic devices for vapor deposition reactor syste

    Non-nequilibrium model on Apollonian networks

    Full text link
    We investigate the Majority-Vote Model with two states (−1,+1-1,+1) and a noise qq on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter qq. We also studies de effect of redirecting a fraction pp of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν\gamma/\nu, β/ν\beta/\nu, and 1/ν1/\nu for several values of rewiring probability pp. The critical noise was determined qcq_{c} and U∗U^{*} also was calculated. The effective dimensionality of the system was observed to be independent on pp, and the value Deff≈1.0D_{eff} \approx1.0 is observed for these networks. Previous results on the Ising model in Apollonian Networks have reported no presence of a phase transition. Therefore, the results present here demonstrate that the Majority-Vote Model belongs to a different universality class as the equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure

    Avalanche Collapse of Interdependent Network

    Full text link
    We reveal the nature of the avalanche collapse of the giant viable component in multiplex networks under perturbations such as random damage. Specifically, we identify latent critical clusters associated with the avalanches of random damage. Divergence of their mean size signals the approach to the hybrid phase transition from one side, while there are no critical precursors on the other side. We find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one of the interdependent networks does not diverge.Comment: 4 pages, 5 figure

    Critical dynamics of the k-core pruning process

    Full text link
    We present the theory of the k-core pruning process (progressive removal of nodes with degree less than k) in uncorrelated random networks. We derive exact equations describing this process and the evolution of the network structure, and solve them numerically and, in the critical regime of the process, analytically. We show that the pruning process exhibits three different behaviors depending on whether the mean degree of the initial network is above, equal to, or below the threshold _c corresponding to the emergence of the giant k-core. We find that above the threshold the network relaxes exponentially to the k-core. The system manifests the phenomenon known as "critical slowing down", as the relaxation time diverges when tends to _c. At the threshold, the dynamics become critical characterized by a power-law relaxation (1/t^2). Below the threshold, a long-lasting transient process (a "plateau" stage) occurs. This transient process ends with a collapse in which the entire network disappears completely. The duration of the process diverges when tends to _c. We show that the critical dynamics of the pruning are determined by branching processes of spreading damage. Clusters of nodes of degree exactly k are the evolving substrate for these branching processes. Our theory completely describes this branching cascade of damage in uncorrelated networks by providing the time dependent distribution function of branching. These theoretical results are supported by our simulations of the kk-core pruning in Erdos-Renyi graphs.Comment: 12 pages, 10 figure

    Tax evasion dynamics and Zaklan model on Opinion-dependent Network

    Full text link
    Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on Stauffer-Hohnisch-Pittnauer (SHP) networks. To control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhood of the critical noise qcq_{c} to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied besides using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies giving the same behavior regardless of dynamic or topology used here.Comment: 14 page, 4 figure

    Bootstrap Percolation on Complex Networks

    Full text link
    We consider bootstrap percolation on uncorrelated complex networks. We obtain the phase diagram for this process with respect to two parameters: ff, the fraction of vertices initially activated, and pp, the fraction of undamaged vertices in the graph. We observe two transitions: the giant active component appears continuously at a first threshold. There may also be a second, discontinuous, hybrid transition at a higher threshold. Avalanches of activations increase in size as this second critical point is approached, finally diverging at this threshold. We describe the existence of a special critical point at which this second transition first appears. In networks with degree distributions whose second moment diverges (but whose first moment does not), we find a qualitatively different behavior. In this case the giant active component appears for any f>0f>0 and p>0p>0, and the discontinuous transition is absent. This means that the giant active component is robust to damage, and also is very easily activated. We also formulate a generalized bootstrap process in which each vertex can have an arbitrary threshold.Comment: 9 pages, 3 figure

    Mechanisms of kinetic trapping in self-assembly and phase transformation

    Get PDF
    In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions

    Recovery of adrenal function in a patient with confirmed Addison's disease

    Get PDF
    Addison's disease is a condition characterised by immune-mediated destruction of the adrenal glands leading to a requirement of lifelong replacement therapy with mineralocorticoid and glucocorticoid. We present a case of a 53-year-old man who presented at the age of 37 years with nausea, fatigue and dizziness. He was found to have postural hypotension and buccal pigmentation. His presenting cortisol level was 43 nmol/l with no response to Synacthen testing. He made an excellent response to conventional replacement therapy with hydrocortisone and fludrocortisone and then remained well for 16 years. On registering with a new endocrinologist, his hydrocortisone dose was revised downwards and pre- and post-dose serum cortisol levels were assessed. His pre-dose cortisol was surprisingly elevated, and so his dose was further reduced. Subsequent Synacthen testing was normal and has remained so for further 12 months. He is now asymptomatic without glucocorticoid therapy, although he continues on fludrocortisone 50 μg daily. His adrenal antibodies are positive, although his ACTH and renin levels remain elevated after treatment. Addison's disease is generally deemed to lead to irreversible cell-mediated immune destruction of the adrenal glands. For this reason, patients receive detailed counselling and education on the need for lifelong replacement therapy. To our knowledge, this is the third reported case of spontaneous recovery of the adrenal axis in Addison's disease. Recovery may therefore be more common than previously appreciated, which may have major implications for the treatment and monitoring of this condition, and for the education given to patients at diagnosis. LEARNING POINTS: Partial recovery from Addison's disease is possible although uncommon. Patients with long-term endocrine conditions on replacement therapy still benefit from regular clinical and biochemical assessment, to revisit optimal management. As further reports of adrenal axis recovery emerge, this may influence the counselling given to patients with Addison's disease in the future

    Velocity distributions in dissipative granular gases

    Full text link
    Motivated by recent experiments reporting non-Gaussian velocity distributions in driven dilute granular materials, we study by numerical simulation the properties of 2D inelastic gases. We find theoretically that the form of the observed velocity distribution is governed primarily by the coefficient of restitution η\eta and q=NH/NCq=N_H/N_C, the ratio between the average number of heatings and the average number of collisions in the gas. The differences in distributions we find between uniform and boundary heating can then be understood as different limits of qq, for q≫1q \gg 1 and q≲1q \lesssim 1 respectively.Comment: 5 figure

    Competing density-wave orders in a one-dimensional hard-boson model

    Get PDF
    We describe the zero-temperature phase diagram of a model of bosons, occupying sites of a linear chain, which obey a hard-exclusion constraint: any two nearest-neighbor sites may have at most one boson. A special case of our model was recently proposed as a description of a ``tilted'' Mott insulator of atoms trapped in an optical lattice. Our quantum Hamiltonian is shown to generate the transfer matrix of Baxter's hard-square model. Aided by exact solutions of a number of special cases, and by numerical studies, we obtain a phase diagram containing states with long-range density-wave order with period 2 and period 3, and also a floating incommensurate phase. Critical theories for the various quantum phase transitions are presented. As a byproduct, we show how to compute the Luttinger parameter in integrable theories with hard-exclusion constraints.Comment: 16 page
    • …
    corecore