3,249 research outputs found

    Mammalian cells in culture actively export specific microRNAs

    Get PDF
    The discovery of microRNAs (miRNAs) as a new class of regulators of gene expression has triggered an explosion of research, but has left many unanswered questions about how this regulation works and how it is integrated with other regulatory mechanisms. A number of miRNAs have been found to be present in blood plasma and other body fluids of humans and mice in surprisingly high concentrations. This observation was unexpected in two respects: first, the fact that these molecules are present at all outside the cell at significant concentrations; and second, that these molecules appear to be stable outside of the cell. In light of this it has been suggested that the biological function of miRNAs may also extend outside of the cell and mediate cell-cell communication^[1-5]^. Such a system would be expected to export specific miRNAs from cells in response to specific biological stimuli. We report here that after serum deprivation several human cell lines tested do export a spectrum of miRNAs into the culture medium. The export response is substantial and prompt. The exported miRNAs are found both within and outside of microvesicles and exosomes. We have identified some candidate protein components of this system outside the cell, and found one exported protein that plays a role in protecting miRNA from degradation. Our results point to a hitherto unrecognized and uncharacterized miRNA trafficking system in mammalian cells that may involve cell-cell communication

    Entropy of Folding of the Triangular Lattice

    Full text link
    The problem of counting the different ways of folding the planar triangular lattice is shown to be equivalent to that of counting the possible 3-colorings of its bonds, a dual version of the 3-coloring problem of the hexagonal lattice solved by Baxter. The folding entropy Log q per triangle is thus given by Baxter's formula q=sqrt(3)(Gamma[1/3])^(3/2)/2pi =1.2087...Comment: 9 pages, harvmac, epsf, uuencoded, 5 figures included, Saclay preprint T/9401

    Critical and Tricritical Hard Objects on Bicolorable Random Lattices: Exact Solutions

    Full text link
    We address the general problem of hard objects on random lattices, and emphasize the crucial role played by the colorability of the lattices to ensure the existence of a crystallization transition. We first solve explicitly the naive (colorless) random-lattice version of the hard-square model and find that the only matter critical point is the non-unitary Lee-Yang edge singularity. We then show how to restore the crystallization transition of the hard-square model by considering the same model on bicolored random lattices. Solving this model exactly, we show moreover that the crystallization transition point lies in the universality class of the Ising model coupled to 2D quantum gravity. We finally extend our analysis to a new two-particle exclusion model, whose regular lattice version involves hard squares of two different sizes. The exact solution of this model on bicolorable random lattices displays a phase diagram with two (continuous and discontinuous) crystallization transition lines meeting at a higher order critical point, in the universality class of the tricritical Ising model coupled to 2D quantum gravity.Comment: 48 pages, 13 figures, tex, harvmac, eps

    The packing of two species of polygons on the square lattice

    Full text link
    We decorate the square lattice with two species of polygons under the constraint that every lattice edge is covered by only one polygon and every vertex is visited by both types of polygons. We end up with a 24 vertex model which is known in the literature as the fully packed double loop model. In the particular case in which the fugacities of the polygons are the same, the model admits an exact solution. The solution is obtained using coordinate Bethe ansatz and provides a closed expression for the free energy. In particular we find the free energy of the four colorings model and the double Hamiltonian walk and recover the known entropy of the Ice model. When both fugacities are set equal to two the model undergoes an infinite order phase transition.Comment: 21 pages, 4 figure

    Glassy behaviour in an exactly solved spin system with a ferromagnetic transition

    Full text link
    We show that applying simple dynamical rules to Baxter's eight-vertex model leads to a system which resembles a glass-forming liquid. There are analogies with liquid, supercooled liquid, glassy and crystalline states. The disordered phases exhibit strong dynamical heterogeneity at low temperatures, which may be described in terms of an emergent mobility field. Their dynamics are well-described by a simple model with trivial thermodynamics, but an emergent kinetic constraint. We show that the (second order) thermodynamic transition to the ordered phase may be interpreted in terms of confinement of the excitations in the mobility field. We also describe the aging of disordered states towards the ordered phase, in terms of simple rate equations.Comment: 11 page

    Using Experience and Case History Data to Enhance the Design of Piled Foundations and Predict Behaviour Characteristics

    Get PDF
    This paper explores the process of piled foundation design and how it can benefit from the inclusion of previous test data and case histories from nearby or geologically similar sites. The interaction between the soil and the structure is critical to the behaviour of a pile and is a function of both the ground conditions and the method of pile construction. An accurate model of the ground conditions is required for the design, as is a detailed knowledge of the method of pile installation and its subsequent interaction with the soil. Where case histories are available they can be utilised to refine the design or to reduce the risk associated with a solution. This is currently often done in a subjective manner by the application of engineering judgement and personal experience. This paper discusses a quantitative method which can be used to employ data from case histories and provide an objective approach to the inclusion of existing knowledge and experience. Bayesian updating is utilised to improve the model of the ground conditions and subsequently the degree of uncertainty is reduced. The probability of failure has been seen to be reduced by this process, as demonstrated through the application an example situation

    Glassy states in fermionic systems with strong disorder and interactions

    Full text link
    We study the competition between interactions and disorder in two dimensions. Whereas a noninteracting system is always Anderson localized by disorder in two dimensions, a pure system can develop a Mott gap for sufficiently strong interactions. Within a simple model, with short-ranged repulsive interactions, we show that, even in the limit of strong interaction, the Mott gap is completely washed out by disorder for an infinite system for dimensions D≀2D\le 2. The probability of a nonzero gap falls onto a universal curve, leading to a glassy state for which we provide a scaling function for the frequency dependent susceptibility.Comment: 8 pages, 5 figures, expanded to contain some analytical results for one dimensio

    Theoretical Studies of Electron Transfer in Metal Dimers: XY+→X+Y, Where X, Y=Be, Mg, Ca, Zn, Cd

    Get PDF
    The electronic matrix element responsible for electron exchange in a series of metal dimers was calculated using ab initio wave functions. The distance dependence is approximately exponential for a large range of internuclear separations. A localized description, where the two nonorthogonal structures characterizing the electron localized at the left and right sites are each obtained self‐consistently, is found to provide the best description of the electron exchange process. We find that Gaussian basis sets are capable of predicting the expected exponential decay of the electronic interactions even at quite large internuclear distances
    • 

    corecore