42 research outputs found

    Mutations in the TolC periplasmic domain affect substrate specificity of the AcrAB-TolC pump

    Get PDF
    TolC and the other members of the outer membrane factor (OMF) family are outer membrane proteins forming trimeric channels that serve as a conduit for most actively effluxed substrates in Gram-negative bacteria by providing a key component in a multitude of tripartite efflux-pumps. Current models of tripartite pump assembly ascribe substrate selection to the inner-membrane transporter and periplasmic-adapter protein (PAP) assembly, suggesting that TolC is a passive, non-selective channel. While the membrane-embedded portion of the protein adopts a porin-like fold, the periplasmic domain of TolC presents a unique “alpha-barrel” architecture. This alpha-barrel consists of pseudo-continuous α-helices forming curved coiled-coils, whose tips form α-helical hairpins, relaxation of which results in a transition of TolC from a closed to an open-aperture state allowing effective efflux of substrates through its channel. Here, we analysed the effects of site-directed mutations targeting the alpha-barrel of TolC, of the principal tripartite efflux-pump Escherichia coli AcrAB-TolC, on the activity and specificity of efflux. Live-cell functional assays with these TolC mutants revealed that positions both at the periplasmic tip of, and partway up the TolC coiled-coil alpha-barrel domain are involved in determining the functionality of the complex. We report that mutations affecting the electrostatic properties of the channel, particularly the D371V mutation, significantly impact growth even in the absence of antibiotics, causing hyper-susceptibility to all tested efflux-substrates. These results suggest that inhibition of TolC functionality is less well-tolerated than deletion of tolC, and such inhibition may have an antibacterial effect. Significantly and unexpectedly, we identified antibiotic-specific phenotypes associated with novel TolC mutations, suggesting that substrate specificity may not be determined solely by the transporter protein or the PAP, but may reside at least partially with the TolC-channel. Furthermore, some of the effects of mutations are difficult to reconcile with the currently prevalent tip-to-tip model of PAP-TolC interaction due to their location higher-up on the TolC alpha-barrel relative to the proposed PAP-docking sites. Taken together our results suggest a possible new role for TolC in vetting of efflux substrates, alongside its established role in tripartite complex assembly

    Interchangeability of periplasmic adaptor proteins AcrA and AcrE in forming functional efflux pumps with AcrD in Salmonella enterica serovar Typhimurium

    Get PDF
    Background Resistance-nodulation-division (RND) efflux pumps are important mediators of antibiotic resistance. RND pumps, including the principal multidrug efflux pump AcrAB-TolC in Salmonella, are tripartite systems with an inner membrane RND transporter, a periplasmic adaptor protein (PAP) and an outer membrane factor (OMF). We previously identified the residues required for binding between the PAP AcrA and the RND transporter AcrB and have demonstrated that PAPs can function with non-cognate transporters. AcrE and AcrD/AcrF are homologues of AcrA and AcrB, respectively. Here, we show that AcrE can interact with AcrD, which does not possess its own PAP, and establish that the residues previously identified in AcrB binding are also involved in AcrD binding. Methods The acrD and acrE genes were expressed in a strain lacking acrABDEF (Δ3RND). PAP residues involved in promiscuous interactions were predicted based on previously defined PAP-RND interactions and corresponding mutations generated in acrA and acrE. Antimicrobial susceptibility of the mutant strains was determined. Results Co-expression of acrD and acrE significantly decreased susceptibility of the Δ3RND strain to AcrD substrates, showing that AcrE can form a functional complex with AcrD. The substrate profile of Salmonella AcrD differed from that of Escherichia coli AcrD. Mutations targeting the previously defined PAP-RND interaction sites in AcrA/AcrE impaired efflux of AcrD-dependent substrates. Conclusions These data indicate that AcrE forms an efflux-competent pump with AcrD and thus presents an alternative PAP for this pump. Mutagenesis of the conserved RND binding sites validates the interchangeability of AcrA and AcrE, highlighting them as potential drug targets for efflux inhibition

    A role for the periplasmic adaptor protein AcrA in vetting substrate access to the RND efflux transporter AcrB

    Get PDF
    Tripartite resistance-nodulation-division (RND) efflux pumps, such as AcrAB-TolC of Salmonella Typhimurium, contribute to antibiotic resistance and comprise an inner membrane RND-transporter, an outer membrane factor, and a periplasmic adaptor protein (PAP). The role of the PAP in the assembly and active transport process remains poorly understood. Here, we identify the functionally critical residues involved in PAP-RND-transporter binding between AcrA and AcrB and show that the corresponding RND-binding residues in the closely related PAP AcrE, are also important for its interaction with AcrB. We also report a residue in the membrane-proximal domain of AcrA, that when mutated, differentially affects the transport of substrates utilising different AcrB efflux channels, namely channels 1 and 2. This supports a potential role for the PAP in sensing the substrate-occupied state of the proximal binding pocket of the transporter and substrate vetting. Understanding the PAP’s role in the assembly and function of tripartite RND pumps can guide novel ways to inhibit their function to combat antibiotic resistance

    The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria.

    Get PDF
    Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ("AchillesÂŽ heel" of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalisation of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs - efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps

    Modular design of the selectivity filter pore loop in a novel family of prokaryotic inward rectifier' (NirBac) channels

    Get PDF
    Potassium channels exhibit a modular design with distinct structural and functional domains; in particular, a highly conserved pore-loop sequence that determines their ionic selectivity. We now report the functional characterisation of a novel group of functionally non-selective members of the prokaryotic inward rectifier' subfamily of K + channels. These channels share all the key structural domains of eukaryotic and prokaryotic Kir/KirBac channels, but instead possess unique pore-loop selectivity filter sequences unrelated to any other known ionic selectivity filter. The strikingly unusual architecture of these NirBac' channels defines a new family of functionally non-selective ion channels, and also provides important insights into the modular design of ion channels, as well as the evolution of ionic selectivity within this superfamily of tetrameric cation channels

    Structure-function analysis of MmpL7-mediated lipid transport in mycobacteria

    Get PDF
    Mycobacterial membrane protein Large (MmpL7) is a Resistance-Nodulation-Division (RND) family transporter required for the export of the virulence lipid, phthiocerol dimycocerosate (PDIM), in Mycobacterium tuberculosis. Using a null mutant of the related, vaccine strain Mycobacterium bovis BCG, we show that MmpL7 is also involved in the transport of the structurally related phenolic glycolipid (PGL), which is also produced by the hypervirulent M. tuberculosis strain HN878, but absent in M. tuberculosis H37Rv. Furthermore, we generated an in silico model of M. tuberculosis MmpL7 that revealed MmpL7 as a functional outlier within the MmpL-family, missing a canonical proton-relay signature sequence, suggesting that it employs a yet-unidentified mechanism for energy coupling for transport. In addition, our analysis demonstrates that the periplasmic porter domain 2 insert (PD2-insert), which doesn't share any recognisable homology, is highly alpha-helical in nature, suggesting an organisation similar to that seen in the hopanoid PD3/4 domains. Using the M. bovis BCG mmpL7 mutant for functional complementation with mutated alleles of mmpL7, we were able to identify residues present in the transmembrane domains TM4 and TM10, and the PD2 domain insert that play a crucial role in PDIM transport, and in certain cases, biosynthesis of PDIM

    Structural and functional analysis of the Escherichia coli acid-sensing histidine kinase EvgS

    Get PDF
    The EvgS/EvgA two-component system of Escherichia coli is activated in response to low pH and alkali metals and regulates many genes, including those for the glutamate-dependent acid resistance system and a number of efflux pumps. EvgS, the sensor kinase, is one of five unconventional histidine kinases (HKs) in E. coli and has a large periplasmic domain and a cytoplasmic PAS domain in addition to phospho-acceptor, HK and dimerization, internal receiver, and phosphotransfer domains. Mutations that constitutively activate the protein at pH 7 map to the PAS domain. Here, we built a homology model of the periplasmic region of EvgS, based on the structure of the equivalent region of the BvgS homologue, to guide mutagenesis of potential key residues in this region. We show that histidine 226 is required for induction and that it is structurally colocated with a proline residue (P522) at the top of the predicted transmembrane helix that is expected to play a key role in passing information to the cytoplasmic domains. We also show that the constitutive mutations in the PAS domain can be further activated by low external pH. Expression of the cytoplasmic part of the protein alone also gives constitutive activation, which is lost if the constitutive PAS mutations are present. These findings are consistent with a model in which EvgS senses both external and internal pH and is activated by a shift from a tight inactive to a weak active dimer, and we present an analysis of the purified cytoplasmic portion of EvgS that supports this

    Quantitative real-time analysis of the efflux by the MacAB-TolC tripartite efflux pump clarifies the role of ATP hydrolysis within mechanotransmission mechanism

    Get PDF
    Tripartite efflux pumps built around ATP-binding cassette (ABC) transporters are membrane protein machineries that perform vectorial export of a large variety of drugs and virulence factors from Gram negative bacteria, using ATP-hydrolysis as energy source. Determining the number of ATP molecules consumed per transport cycle is essential to understanding the efficiency of substrate transport. Using a reconstituted pump in a membrane mimic environment, we show that MacAB-TolC from Escherichia coli couples substrate transport to ATP-hydrolysis with high efficiency. Contrary to the predictions of the currently prevailing “molecular bellows” model of MacB-operation, which assigns the power stroke to the ATP-binding by the nucleotide binding domains of the transporter, by utilizing a novel assay, we report clear synchronization of the substrate transfer with ATP-hydrolysis, suggesting that at least some of the power stroke for the substrate efflux is provided by ATP-hydrolysis. Our findings narrow down the window for energy consumption step that results in substrate transition into the TolC-channel, expanding the current understanding of the efflux cycle of the MacB-based tripartite assemblies. Based on that we propose a modified model of the MacB cycle within the context of tripartite complex assembly

    The mycolic acid reductase Rv2509 has distinct structural motifs and is essential for growth in slow growing mycobacteria

    Get PDF
    The final step in mycolic acid biosynthesis in Mycobacterium tuberculosis is catalysed by a mycolyl reductase encoded by the Rv2509 gene. Sequence analysis and homology modelling indicates that Rv2509 belongs to the short‐chain fatty acid dehydrogenase/reductase (SDR) family, but with some distinct features that warrant its classification as belonging to a novel family of short‐chain dehydrogenases. In particular, the predicted structure revealed a unique α‐helical C‐terminal region which we demonstrated to be essential for Rv2509 function, though this region did not seem to play any role in protein stabilisation or oligomerisation. We also show that unlike the M. smegmatis homologue which was not essential for growth, Rv2509 was an essential gene in slow growing mycobacteria. A knockdown strain of the BCG2529, the Rv2509 homologue in Mycobacterium bovis BCG was unable to survive following conditional depletion of BCG2529. This conditional depletion also led to a reduction of mature mycolic acid production and accumulation of intermediates derived from 3‐oxo‐mycolate precursors. Our studies demonstrate novel features of the mycolyl reductase Rv2509 and outline its role in mycobacterial growth, highlighting its potential as a new target for therapies
    corecore