59 research outputs found

    The AIB1 glutamine repeat polymorphism is not associated with risk of breast cancer before age 40 years in Australian women

    Get PDF
    INTRODUCTION: AIB1, located at 20q12, is a member of the steroid hormone coactivator family. It contains a glutamine repeat (CAG/CAA) polymorphism at its carboxyl-terminal region that may alter the transcriptional activation of the receptor and affect susceptibility to breast cancer through altered sensitivity to hormones. METHODS: We evaluated this repeat polymorphism in the context of early-onset disease by conducting a case-control study of 432 Australian women diagnosed with breast cancer before the age of 40 years and 393 population-based control individuals who were frequency matched for age. Genotyping was performed using a scanning laser fluorescence imager. RESULTS: There were no differences in genotype frequencies between cases and control individuals, or between cases categorized by family history or by BRCA1 and BRCA2 germline mutation status. There was no evidence that the presence of one or two alleles of 26 glutamine repeats or fewer was associated with breast cancer (odds ratio = 1.03, 95% confidence interval = 0.73–1.44), or that women with alleles greater than 29 repeats were at increased risk of breast cancer. Exclusion of women who carried a BRCA1 or BRCA2 mutation (24 cases) and non-Caucasian women (44 cases) did not alter the risk estimates or inferences. We present raw data, including that on mutation carriers, to allow pooling with other studies. CONCLUSION: There was no evidence that risk of breast cancer depends on AIB1 CAG/CAA polymorphism status, even if affected women carry a mutation in BRCA1 or BRCA2

    AIB1 gene amplification and the instability of polyQ encoding sequence in breast cancer cell lines

    Get PDF
    BACKGROUND: The poly Q polymorphism in AIB1 (amplified in breast cancer) gene is usually assessed by fragment length analysis which does not reveal the actual sequence variation. The purpose of this study is to investigate the sequence variation of poly Q encoding region in breast cancer cell lines at single molecule level, and to determine if the sequence variation is related to AIB1 gene amplification. METHODS: The polymorphic poly Q encoding region of AIB1 gene was investigated at the single molecule level by PCR cloning/sequencing. The amplification of AIB1 gene in various breast cancer cell lines were studied by real-time quantitative PCR. RESULTS: Significant amplifications (5–23 folds) of AIB1 gene were found in 2 out of 9 (22%) ER positive cell lines (in BT-474 and MCF-7 but not in BT-20, ZR-75-1, T47D, BT483, MDA-MB-361, MDA-MB-468 and MDA-MB-330). The AIB1 gene was not amplified in any of the ER negative cell lines. Different passages of MCF-7 cell lines and their derivatives maintained the feature of AIB1 amplification. When the cells were selected for hormone independence (LCC1) and resistance to 4-hydroxy tamoxifen (4-OH TAM) (LCC2 and R27), ICI 182,780 (LCC9) or 4-OH TAM, KEO and LY 117018 (LY-2), AIB1 copy number decreased but still remained highly amplified. Sequencing analysis of poly Q encoding region of AIB1 gene did not reveal specific patterns that could be correlated with AIB1 gene amplification. However, about 72% of the breast cancer cell lines had at least one under represented (<20%) extra poly Q encoding sequence patterns that were derived from the original allele, presumably due to somatic instability. Although all MCF-7 cells and their variants had the same predominant poly Q encoding sequence pattern of (CAG)(3)CAA(CAG)(9)(CAACAG)(3)(CAACAGCAG)(2)CAA of the original cell line, a number of altered poly Q encoding sequences were found in the derivatives of MCF-7 cell lines. CONCLUSION: These data suggest that poly Q encoding region of AIB1 gene is somatic unstable in breast cancer cell lines. The instability and the sequence characteristics, however, do not appear to be associated with the level of the gene amplification

    HLA-Driven Convergence of HIV-1 Viral Subtypes B and F Toward the Adaptation to Immune Responses in Human Populations

    Get PDF
    BACKGROUND: Cytotoxic T-Lymphocyte (CTL) response drives the evolution of HIV-1 at a host-level by selecting HLA-restricted escape mutations. Dissecting the dynamics of these escape mutations at a population-level would help to understand how HLA-mediated selection drives the evolution of HIV-1. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a study of the dynamics of HIV-1 CTL-escape mutations by analyzing through statistical approaches and phylogenetic methods the viral gene gag sequenced in plasma samples collected between the years 1987 and 2006 from 302 drug-naive HIV-positive patients. By applying logistic regression models and after performing correction for multiple test, we identified 22 potential CTL-escape mutations (p-value<0.05; q-value<0.2); 10 of these associations were confirmed in samples biologically independent by a Bayesian Markov Chain Monte-Carlo method. Analyzing their prevalence back in time we found that escape mutations that are the consensus residue in samples collected after 2003 have actually significantly increased in time in one of either B or F subtype until becoming the most frequent residue, while dominating the other viral subtype. Their estimated prevalence in the viral subtype they did not dominate was lower than 30% for the majority of samples collected at the end of the 80's. In addition, when screening the entire viral region, we found that the 75% of positions significantly changing in time (p<0.05) were located within known CTL epitopes. CONCLUSIONS: Across HIV Gag protein, the rise of polymorphisms from independent origin during the last twenty years of epidemic in our setting was related to an association with an HLA allele. The fact that these mutations accumulated in one of either B or F subtypes have also dominated the other subtype shows how this selection might be causing a convergence of viral subtypes to variants which are more likely to evade the immune response of the population where they circulate

    Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Get PDF
    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed

    The COMET Handbook: version 1.0

    Full text link
    • …
    corecore