183 research outputs found

    Sources of quantum waves

    Get PDF
    Due to the space and time dependence of the wave function in the time dependent Schroedinger equation, different boundary conditions are possible. The equation is usually solved as an ``initial value problem'', by fixing the value of the wave function in all space at a given instant. We compare this standard approach to "source boundary conditions'' that fix the wave at all times in a given region, in particular at a point in one dimension. In contrast to the well-known physical interpretation of the initial-value-problem approach, the interpretation of the source approach has remained unclear, since it introduces negative energy components, even for ``free motion'', and a time-dependent norm. This work provides physical meaning to the source method by finding the link with equivalent initial value problems.Comment: 12 pages, 7 inlined figures; typos correcte

    A measurement-based approach to quantum arrival times

    Get PDF
    For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. The resulting temporal distribution is explicitly calculated for the one-dimensional case and compared with axiomatically proposed expressions. As a main result we show that by means of a deconvolution one obtains the well known quantum mechanical probability flux of the particle at the location as a limiting distribution.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Transient response of a quantum wave to an instantaneous potential step switching

    Get PDF
    The transient response of a stationary state of a quantum particle in a step potential to an instantaneous change in the step height (a simplified model for a sudden bias switch in an electronic semiconductor device) is solved exactly by means of a semianalytical expression. The characteristic times for the transient process up to the new stationary state are identified. A comparison is made between the exact results and an approximate method.Comment: 8 pages, 8 figures, Revtex

    Quantum times of arrival for multiparticle states

    Get PDF
    Using the concept of crossing state and the formalism of second quantization, we propose a prescription for computing the density of arrivals of particles for multiparticle states, both in the free and the interacting case. The densities thus computed are positive, covariant in time for time independent hamiltonians, normalized to the total number of arrivals, and related to the flux. We investigate the behaviour of this prescriptions for bosons and fermions, finding boson enhancement and fermion depletion of arrivals.Comment: 10 a4 pages, 5 inlined figure

    Generalizations of Kijowski's time-of-arrival distribution for interaction potentials

    Full text link
    Several proposals for a time-of-arrival distribution of ensembles of independent quantum particles subject to an external interaction potential are compared making use of the ``crossing state'' concept. It is shown that only one of them has the properties expected for a classical distribution in the classical limit. The comparison is illustrated numerically with a collision of a Gaussian wave packet with an opaque square barrier.Comment: 5 inlined figures: some typo correction

    Towards a time-reversal mirror for quantum systems

    Full text link
    The reversion of the time evolution of a quantum state can be achieved by changing the sign of the Hamiltonian as in the polarization echo experiment in NMR. In this work we describe an alternative mechanism inspired by the acoustic time reversal mirror. By solving the inverse time problem in a discrete space we develop a new procedure, the perfect inverse filter. It achieves the exact time reversion in a given region by reinjecting a prescribed wave function at its periphery.Comment: 6 pages, 4 figures. Introduction modified, references added, one figure added to improve the discussio

    Quantum-wave evolution in a step potential barrier

    Get PDF
    By using an exact solution to the time-dependent Schr\"{o}dinger equation with a point source initial condition, we investigate both the time and spatial dependence of quantum waves in a step potential barrier. We find that for a source with energy below the barrier height, and for distances larger than the penetration length, the probability density exhibits a {\it forerunner} associated with a non-tunneling process, which propagates in space at exactly the semiclassical group velocity. We show that the time of arrival of the maximum of the {\it forerunner} at a given fixed position inside the potential is exactly the traversal time, τ\tau. We also show that the spatial evolution of this transient pulse exhibits an invariant behavior under a rescaling process. This analytic property is used to characterize the evolution of the {\it forerunner}, and to analyze the role played by the time of arrival, 3−1/2τ3^{-1/2}\tau, found recently by Muga and B\"{u}ttiker [Phys. Rev. A {\bf 62}, 023808 (2000)].Comment: To be published in Phys. Rev. A (2002

    Simulation of wavepacket tunneling of interacting identical particles

    Full text link
    We demonstrate a new method of simulation of nonstationary quantum processes, considering the tunneling of two {\it interacting identical particles}, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamilton-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.Comment: 11 pages, 3 figure
    • 

    corecore