39 research outputs found

    Novel Inhibitory Function of the Rhizomucor miehei Lipase Propeptide and Three-Dimensional Structures of Its Complexes with the Enzyme

    Get PDF
    Many proteins are synthesized as precursors, with propeptides playing a variety of roles such as assisting in folding or preventing them from being active within the cell. While the precise role of the propeptide in fungal lipases is not completely understood, it was previously reported that mutations in the propeptide region of the Rhizomucor miehei lipase have an influence on the activity of the mature enzyme, stressing the importance of the amino acid composition of this region. We here report two structures of this enzyme in complex with its propeptide, which suggests that the latter plays a role in the correct maturation of the enzyme. Most importantly, we demonstrate that the propeptide shows inhibition of lipase activity in standard lipase assays and propose that an important role of the propeptide is to ensure that the enzyme is not active during its expression pathway in the original host

    Functional characterization of alpha-glucan,water dikinase, the starch phosphorylating enzyme.

    No full text
    GWD (alpha-glucan,water dikinase) is the enzyme that catalyses the phosphorylation of starch by a dikinase-type reaction in which the beta-phosphate of ATP is transferred to either the C-6 or the C-3 position of the glycosyl residue of amylopectin. GWD shows similarity in both sequence and reaction mechanism to bacterial PPS (pyruvate,water dikinase) and PPDK (pyruvate,phosphate dikinase). Amino acid sequence alignments identified a conserved histidine residue located in the putative phosphohistidine domain of potato GWD. Site-directed mutagenesis of this histidine residue resulted in an inactive enzyme and loss of autophosphorylation. Native GWD is a homodimer and shows a strict requirement for the presence of alpha-1,6 branch points in its polyglucan substrate, and exhibits a sharp 20-fold increase in activity when the degree of polymerization is increased from 27.8 to 29.5. In spite of the high variability in the degree of starch phosphorylation, GWD proteins are ubiquitous in plants. The overall reaction mechanism of GWD is similar to that of PPS and PPDK, but the GWD family appears to have arisen after divergence of the plant kingdom. The nucleotide-binding domain of GWD exhibits a closer phylogenetic relationship to prokaryotic PPSs than to PPDKs
    corecore