735 research outputs found

    Parallel waves of inductive signaling and mesenchyme maturation regulate differentiation of the chick mesonephros

    Get PDF
    AbstractThe mesonephros is a linear kidney that, in chicken embryos, stretches between the axial levels of the 15th to the 30th somites. Mesonephros differentiation proceeds from anterior to posterior and is dependent on signals from the nephric duct, which migrates from anterior to posterior through the mesonephric region. If migration of the nephric duct is blocked, markers of tubule differentiation, including Lhx1 and Wnt4, are not activated posterior to the blockade. However, activation and maintenance of the early mesonephric mesenchyme markers Osr1, Eya1 and Pax2 proceeds normally in an anterior-to-posterior wave, indicating that these genes are not dependent on inductive signals from the duct. The expression of Lhx1 and Wnt4 can be rescued in duct-blocked embryos by supplying a source of canonical Wnt signaling, although epithelial structures are not obtained, suggesting that the duct may express other tubule-inducing signals in addition to Wnts. In the absence of the nephric duct, anterior mesonephric mesenchyme adjacent to somites exhibits greater competence to initiate tubular differentiation in response to Wnt signaling than more posterior mesonephric mesenchyme adjacent to unsegmented paraxial mesoderm. It is proposed that mesonephric tubule differentiation is regulated by two independent parallel waves, one of inductive signaling from the nephric duct and the other of competence of the mesonephric mesenchyme to undergo tubular differentiation, both of which travel from anterior to posterior in parallel with the formation of new somites

    Quantitative 2D magnetorelaxometry imaging of magnetic nanoparticles using optically pumped magnetometers

    Get PDF
    For biomagnetical applications exploiting physical properties of magnetic nanoparticles (MNP), e.g., magnetic hyperthermia, knowledge about the quantitative spatial MNP distribution is crucial, which can be extracted by magnetorelaxometry (MRX) imaging. In this paper, we present quantification, quantitative 1D reconstruction, and quantitative 2D imaging of MNP by exploiting optically pumped magnetometers for MRX. While highlighting the potential of commercially available optically pumped magnetometers (OPM) for MRXI, we discuss current limitations of the used OPM. We show, that with our OPM setup, MNP can be precisely quantified with iron amounts down to ≈6 μg, which can be improved easily. With a 1D-reconstruction setup, point-like and complex MNP phantoms can be reconstructed quantitatively with high precision and accuracy. We show that with our developed 2D MRX imaging setup, which measures 12 cm by 8 cm, point-like MNP distributions with clinically relevant iron concentrations can be reconstructed precisely and accurately. Our 2D setup has the potential to be easily extended to a tomography styled (and thus slice-selective) 3D scanner, by adding a mechanical axis to the phantom

    Impaired Tactile Temporal Discrimination in Patients With Hepatic Encephalopathy

    Get PDF
    The sensory system constantly receives stimuli from the external world. To discriminate two stimuli correctly as two temporally distinct events, the temporal distance or stimulus onset asynchrony (SOA) between the two stimuli has to exceed a specific threshold. If the SOA between two stimuli is shorter than this specific threshold, the two stimuli will be perceptually fused and perceived as one single stimulus. Patients with hepatic encephalopathy (HE) are known to show manifold perceptual impairments, including slowed visual temporal discrimination abilities as measured by the critical flicker frequency (CFF). Here, we hypothesized that HE patients are also impaired in their tactile temporal discrimination abilities and, thus, require a longer SOA between two tactile stimuli to perceive the stimuli as two temporally distinct events. To test this hypothesis, patients with varying grades of HE and age-matched healthy individuals performed a tactile temporal discrimination task. All participants received two tactile stimuli with varying SOA applied to their left index finger and reported how many distinct stimuli they perceived (“1” vs. “2”). HE patients needed a significantly longer SOA (138.0 ± 11.3 ms) between two tactile stimuli to perceive the stimuli as two temporally distinct events than healthy controls (78.6 ± 13.1 ms; p < 0.01). In addition, we found that the temporal discrimination ability in the tactile modality correlated positively with the temporal discrimination ability in the visual domain across all participants (i.e., negative correlation between tactile SOA and visual CFF: r = −0.37, p = 0.033). Our findings provide evidence that temporal tactile perception is substantially impaired in HE patients. In addition, the results suggest that tactile and visual discrimination abilities are affected in HE in parallel. This finding might argue for a common underlying pathophysiological mechanism. We argue that the known global slowing of neuronal oscillations in HE might represent such a common mechanism

    Anaplasma phagocytophilum Infection in Ixodes ricinus, Bavaria, Germany

    Get PDF
    Anaplasma phagocytophilum DNA was detected by real-time PCR, which targeted the msp2 gene, in 2.9% of questing Ixodes ricinus ticks (adults and nymphs; n = 2,862), collected systematically from selected locations in Bavaria, Germany, in 2006. Prevalence was significantly higher in urban public parks in Munich than in natural forests

    An interdisciplinary approach towards improved understanding of soil deformation during compaction

    Get PDF
    International audienceSoil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often adopted from conventional soil mechanics (e.g. foundation engineering). However, in contrast with standard geotechnical applications, undesired stresses applied by agricultural tyres/tracks are highly dynamic and last for very short times. Moreover, arable soils are typically unsaturated and contain important secondary structures (e.g. aggregates), factors important for affecting their soil mechanical behaviour. Mechanical processes in porous media are not only of concern in soil mechanics, but also in other fields including geophysics and granular material science. Despite similarity of basic mechanical processes, theoretical frameworks often differ and reflect disciplinary focus. We review concepts from different but complementary fields concerned with porous media mechanics and highlight opportunities for synergistic advances in understanding deformation and compaction of arable soils. We highlight the important role of technological advances in non-destructive measurement methods at pore (X-ray tomography) and soil profile (seismic) scales that not only offer new insights into soil architecture and enable visualization of soil deformation, but are becoming instrumental in the development and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth
    corecore