344 research outputs found

    Spatial opinion dynamics and the effects of two types of mixing

    Get PDF
    Spatially situated opinions that can be held with different degrees of conviction lead to spatiotemporal patterns such as clustering (homophily), polarization, and deadlock. Our goal is to understand how sensitive these patterns are to changes in the local nature of interactions. We introduce two different mixing mechanisms, spatial relocation and nonlocal interaction (“telephoning”), to an earlier fully spatial model (no mixing). Interestingly, the mechanisms that create deadlock in the fully spatial model have the opposite effect when there is a sufficient amount of mixing. With telephoning, not only is polarization and deadlock broken up, but consensus is hastened. The effects of mixing by relocation are even more pronounced. Further insight into these dynamics is obtained for selected parameter regimes via comparison to the mean-field differential equations

    THE PHENOLOGY AND DISTRIBUTION OF APHIDS IN CALIFORNIA ALFALFA AS MODIFIED BY LADYBIRD BEETLE PREDATION (COLEOPTERA: COCCINELLIDAE)

    Get PDF
    The phenologies and distributions of pea aphid (Acyrthosiphon pisum (Harris)), blue alfalfa aphid (A. kondoi (Shinji)), and spotted alfalfa aphid (Therioaphis maculata (Buckton)) were intensively studied in California alfalfa. The results showed, as expected, that aphid populations across all densities were aggregated; but that ladybird beetle (Hippodamia convergens (G.-M.)) predation increased the degree of aggregation. The distribution parameters of the aphids were estimated using methods developed by Iwao and Kuno (1971

    MULTITROPHIC MODELS OF PREDATOR-PREY ENERGETICS: I. AGE-SPECIFIC ENERGETICS MODELS—PEA APHID ACYRTHOSIPHON PISUM (HOMOPTERA: APHIDIDAE) AS AN EXAMPLE

    Get PDF
    A simple age-specific energetics (calories or biomass) model for the growth and development, reproduction, respiration, ageing, and intrinsic survivorship as a function of temperature and per capita energy availability for pea aphid (Acyrthosiphon pisum (Harris)) is reported. The ratio of energy supply-demand is used to scale all of the rates in the model. The maximum demand for energy based upon current state values is used to drive the Frazer-Gilbert functional response model (i.e. food acquisition), which is a component of the metabolic pool model used to assimilate energy to growth, reproduction, respiration, and egestion. The extensive data sets on pea aphid energetics published by Randolph et al. (1975) were used to develop the model. As the model estimates reproduction (Mx ) and survivorship (Lx ) values, extensive published age-specific life-data sets on pea aphids are used to test it. The results suggest: (1) the lower thermal threshold for development is raised and the upper threshold is lowered as food resources are decreased (2) the temperature-dependent rate of development is slowed with decreasing energy resources (3) the size of individuals and reproduction become smaller as temperature approaches the upper and lower thermal thresholds.A simple model for multitrophic level interactions incorporating the acquisition and assimilation functions is presente

    Will climate change increase ozone depletion from low-energy-electron precipitation?

    Get PDF
    We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO) produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP) is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NO<sub>x</sub> concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NO<sub>x</sub> with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 ÎĽmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NO<sub>x</sub> effect appears to lose importance due to the different nature of the climate-change induced circulation changes
    • …
    corecore