3 research outputs found
Boosting theorical zeolitic framework generation for the determination of new materials structures using GPU programming
[EN] Evolutionary algorithms have proved to be efficient for solving complicated optimization problems. On the other hand, the many-core architecture in graphical cards "General Purpose Graphic Processing Unit" (GPGPU) offers one of the most attractive cost/performance ratio. Using such hardware, the manuscript shows how an efficiently implemented genetic algorithm with a simple fitness function allows boosting the determination of zeolite structures. A case study is presented. © 2011 the Societies Owner.Baumes, LA.; Kruger, F.; Jiménez Serrano, S.; Collet, P.; Corma Canós, A. (2011). Boosting theorical zeolitic framework generation for the determination of new materials structures using GPU programming. Physical Chemistry Chemical Physics. 13(10):4674-4678. doi:10.1039/c0cp02833aS46744678131
Fluorimetric detection and discrimination of alfa-amino acids based on tricryclic basic dyes and cucurbiturils supramolecular assembly
[EN] A sensor array made by combining four fluorescent tricyclic basic dyes with cucurbiturils is able to identify and discriminate 18 alpha-amino acids up to 10(-4) M without the need of enzyme activation.The financial support by the Spanish DGI (CTQ 2009-s11658) is gratefully acknowledged. The authors thank S. Jimenez for his collaboration on the hITeQ platform.Baumes, LA.; Buaki-Sogo, M.; Jolly, J.; Corma Canós, A.; García Gómez, H. (2011). Fluorimetric detection and discrimination of alfa-amino acids based on tricryclic basic dyes and cucurbiturils supramolecular assembly. Tetrahedron Letters. 52(13):1418-1421. https://doi.org/10.1016/j.tetlet.2011.01.071S14181421521
Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43
[EN] The formation of mesopores in microporous zeolites is generally performed by postsynthesis acid, basic, and steam treatments. The hierarchical pore systems thus formed allow better adsorption, diffusion, and reactivity of these materials. By combining organic and inorganic structure-directing agents and high-throughput methodologies, we were able to synthesize a zeolite with a hierarchical system of micropores and mesopores, with channel openings delimited by 28 tetrahedral atoms. Its complex crystalline structure was solved with the use of automated diffraction tomography.We thank the Spanish government (projects MAT2009-14528-C02-01, PLE2009-0054, and CONSOLIDER INGENIO 2010) and Generalitat Valenciana (Project Prometeo) for financial support, and the Deutsche Forschungsgemeinschaft SFB 625 Projekt B8 for supporting the development of automated diffraction tomography. J.J. thanks the China Scholarship Council for support and Instituto de Tecnologia Quimica (UPV-CSIC) for a Ph.D. scholarship. J.Y. thanks the National Basic Research Program of China (grants 2011CB808703 and 2007CB936402) and the Major International Collaboration Project of China. Further details on the crystal structure may be obtained from the Fachinformationszentrum Karlsruhe (www.fiz-karlsruhe.de), depository no. CDS-423044.Jiang, J.; Jorda Moret, JL.; Yu, J.; Baumes, LA.; Mugnaioli, E.; Díaz Cabañas, MJ.; Kolb, U.... (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science. 333(6046):1131-1134. https://doi.org/10.1126/science.1208652S113111343336046Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-xDavis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957Strohmaier, K. G., & Vaughan, D. E. W. (2003). Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. Journal of the American Chemical Society, 125(51), 16035-16039. doi:10.1021/ja0371653Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., & Davis, M. E. (1996). A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381(6580), 295-298. doi:10.1038/381295a0Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288Čejka, J., & Mintova, S. (2007). Perspectives of Micro/Mesoporous Composites in Catalysis. Catalysis Reviews, 49(4), 457-509. doi:10.1080/01614940701583240Liu, Y., & Pinnavaia, T. J. (2002). Aluminosilicate mesostructures with improved acidity and hydrothermal stability. Journal of Materials Chemistry, 12(11), 3179-3190. doi:10.1039/b204094hKolb, U., Gorelik, T., Kübel, C., Otten, M. T., & Hubert, D. (2007). Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy, 107(6-7), 507-513. doi:10.1016/j.ultramic.2006.10.007Kolb, U., Gorelik, T., & Otten, M. T. (2008). Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy, 108(8), 763-772. doi:10.1016/j.ultramic.2007.12.002Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., … Dahmen, U. (2008). Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit. Microscopy and Microanalysis, 14(5), 469-477. doi:10.1017/s1431927608080902Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., … Spagna, R. (2007). IL MILIONE: a suite of computer programs for crystal structure solution of proteins. Journal of Applied Crystallography, 40(3), 609-613. doi:10.1107/s0021889807010941Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930Baumes, L. A., Kruger, F., Jimenez, S., Collet, P., & Corma, A. (2011). Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming. Physical Chemistry Chemical Physics, 13(10), 4674. doi:10.1039/c0cp02833aEstermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A., & Kessler, H. (1991). A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature, 352(6333), 320-323. doi:10.1038/352320a0Dodin, M., Paillaud, J.-L., Lorgouilloux, Y., Caullet, P., Elkaïm, E., & Bats, N. (2010). A Zeolitic Material with a Three-Dimensional Pore System Formed by Straight 12- and 10-Ring Channels Synthesized with an Imidazolium Derivative as Structure-Directing Agent. Journal of the American Chemical Society, 132(30), 10221-10223. doi:10.1021/ja103648kSastre, G., Vidal-Moya, J. A., Blasco, T., Rius, J., Jordá, J. L., Navarro, M. T., … Corma, A. (2002). Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie International Edition, 41(24), 4722-4726. doi:10.1002/anie.200290028Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921Corma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903cCantín, Á., Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Moliner, M., & Rey, F. (2006). Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta. Angewandte Chemie International Edition, 45(47), 8013-8015. doi:10.1002/anie.200603027Gao, F., Jaber, M., Bozhilov, K., Vicente, A., Fernandez, C., & Valtchev, V. (2009). Framework Stabilization of Ge-Rich Zeolites via Postsynthesis Alumination. Journal of the American Chemical Society, 131(45), 16580-16586. doi:10.1021/ja904458yBaerlocher, C., Gramm, F., Massuger, L., McCusker, L. B., He, Z., Hovmoller, S., & Zou, X. (2007). Structure of the Polycrystalline Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping. Science, 315(5815), 1113-1116. doi:10.1126/science.113792