9,508 research outputs found
A Field Range Bound for General Single-Field Inflation
We explore the consequences of a detection of primordial tensor fluctuations
for general single-field models of inflation. Using the effective theory of
inflation, we propose a generalization of the Lyth bound. Our bound applies to
all single-field models with two-derivative kinetic terms for the scalar
fluctuations and is always stronger than the corresponding bound for slow-roll
models. This shows that non-trivial dynamics can't evade the Lyth bound. We
also present a weaker, but completely universal bound that holds whenever the
Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page
Desensitizing Inflation from the Planck Scale
A new mechanism to control Planck-scale corrections to the inflationary eta
parameter is proposed. A common approach to the eta problem is to impose a
shift symmetry on the inflaton field. However, this symmetry has to remain
unbroken by Planck-scale effects, which is a rather strong requirement on
possible ultraviolet completions of the theory. In this paper, we show that the
breaking of the shift symmetry by Planck-scale corrections can be
systematically suppressed if the inflaton field interacts with a conformal
sector. The inflaton then receives an anomalous dimension in the conformal
field theory, which leads to sequestering of all dangerous high-energy
corrections. We analyze a number of models where the mechanism can be seen in
action. In our most detailed example we compute the exact anomalous dimensions
via a-maximization and show that the eta problem can be solved using only
weakly-coupled physics.Comment: 34 pages, 3 figures
The behavior of fatty acids in the blood plasma of monkeys following exposure to short term stresses
Monkeys exposed to short term stresses (immobilization, jealousy) were found to develop hyperlipacidemia with a rise in concentration of unsaturated fatty acids in blood plasma, especially of oleic acid, and a relative decrease of saturated free fatty acids, chiefly of palmitinic acid. This finding was more pronounced under immobilization stress than in the jealousy situation. Meanwhile, the composition of triglycerides did not change essentially under the conditions used
Testing Superstring Theories with Gravitational Waves
We provide a simple transfer function that determines the effect of an early
matter dominated era on the gravitational wave background and show that a large
class of compactifications of superstring theory might be tested by
observations of the gravitational wave background from inflation. For large
enough reheating temperatures > 10^9 \GeV the test applies to all models
containing at least one scalar with mass < 10^{12}\GeV that acquires a large
initial oscillation amplitude after inflation and has only gravitational
interaction strength, i.e., a field with the typical properties of a modulus.Comment: 5 pages 2 figures, v2: changes in presentation, refs revised, matches
version in print in PR
Ageing without detailed balance: local scale invariance applied to two exactly solvable models
I consider ageing behaviour in two exactly solvable reaction-diffusion
systems. Ageing exponents and scaling functions are determined. I discuss in
particular a case in which the equality of two critical exponents, known from
systems with detailed balance, does not hold any more. Secondly it is shown
that the form of the scaling functions can be understood by symmetry
considerations.Comment: 6 pages, contribution to the summer school "Ageing and the Glass
Transition" held in Luxemburg in September 05. Published versio
Inflection Point Inflation and Time Dependent Potentials in String Theory
We consider models of inflection point inflation. The main drawback of such
models is that they suffer from the overshoot problem. Namely the initial
condition should be fine tuned to be near the inflection point for the universe
to inflate. We show that stringy realizations of inflection point inflation are
common and offer a natural resolution to the overshoot problem.Comment: 15 pages, 2 figures, refs. adde
Kinetics of the long-range spherical model
The kinetic spherical model with long-range interactions is studied after a
quench to or to . For the two-time response and correlation
functions of the order-parameter as well as for composite fields such as the
energy density, the ageing exponents and the corresponding scaling functions
are derived. The results are compared to the predictions which follow from
local scale-invariance.Comment: added "fluctuation-dissipation ratios"; fixed typo
Anomalous Dimensions and Non-Gaussianity
We analyze the signatures of inflationary models that are coupled to strongly
interacting field theories, a basic class of multifield models also motivated
by their role in providing dynamically small scales. Near the squeezed limit of
the bispectrum, we find a simple scaling behavior determined by operator
dimensions, which are constrained by the appropriate unitarity bounds.
Specifically, we analyze two simple and calculable classes of examples:
conformal field theories (CFTs), and large-N CFTs deformed by relevant
time-dependent double-trace operators. Together these two classes of examples
exhibit a wide range of scalings and shapes of the bispectrum, including nearly
equilateral, orthogonal and local non-Gaussianity in different regimes. Along
the way, we compare and contrast the shape and amplitude with previous results
on weakly coupled fields coupled to inflation. This signature provides a
precision test for strongly coupled sectors coupled to inflation via irrelevant
operators suppressed by a high mass scale up to 1000 times the inflationary
Hubble scale.Comment: 40 pages, 10 figure
(Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation
We apply the Effective Field Theory of Inflation to study the case where the
continuous shift symmetry of the Goldstone boson \pi is softly broken to a
discrete subgroup. This case includes and generalizes recently proposed String
Theory inspired models of Inflation based on Axion Monodromy. The models we
study have the property that the 2-point function oscillates as a function of
the wavenumber, leading to oscillations in the CMB power spectrum. The
non-linear realization of time diffeomorphisms induces some self-interactions
for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape
oscillates as a function of the wavenumber. We find that in the regime of
validity of the effective theory, the oscillatory signal contained in the
n-point correlation functions, with n>2, is smaller than the one contained in
the 2-point function, implying that the signature of oscillations, if ever
detected, will be easier to find first in the 2-point function, and only then
in the higher order correlation functions. Still the signal contained in
higher-order correlation functions, that we study here in generality, could be
detected at a subleading level, providing a very compelling consistency check
for an approximate discrete shift symmetry being realized during inflation.Comment: v2 minor revisions; 39 pages, 5 figure
- …