116 research outputs found

    Desensitizing Inflation from the Planck Scale

    Full text link
    A new mechanism to control Planck-scale corrections to the inflationary eta parameter is proposed. A common approach to the eta problem is to impose a shift symmetry on the inflaton field. However, this symmetry has to remain unbroken by Planck-scale effects, which is a rather strong requirement on possible ultraviolet completions of the theory. In this paper, we show that the breaking of the shift symmetry by Planck-scale corrections can be systematically suppressed if the inflaton field interacts with a conformal sector. The inflaton then receives an anomalous dimension in the conformal field theory, which leads to sequestering of all dangerous high-energy corrections. We analyze a number of models where the mechanism can be seen in action. In our most detailed example we compute the exact anomalous dimensions via a-maximization and show that the eta problem can be solved using only weakly-coupled physics.Comment: 34 pages, 3 figures

    D3-brane Potentials from Fluxes in AdS/CFT

    Get PDF
    We give a comprehensive treatment of the scalar potential for a D3-brane in a warped conifold region of a compactification with stabilized moduli. By studying general ultraviolet perturbations in supergravity, we systematically incorporate `compactification effects' sourced by supersymmetry breaking in the compact space. Significant contributions to the D3-brane potential, including the leading term in the infrared, arise from imaginary anti-self-dual (IASD) fluxes. For an arbitrary Calabi-Yau cone, we determine the most general IASD fluxes in terms of scalar harmonics, then compute the resulting D3-brane potential. Specializing to the conifold, we identify the operator dual to each mode of flux, and for chiral operators we confirm that the potential computed in the gauge theory matches the gravity result. The effects of four-dimensional curvature, including the leading D3-brane mass term, arise directly from the ten-dimensional equations of motion. Furthermore, we show that gaugino condensation on D7-branes provides a local source for IASD flux. This flux precisely encodes the nonperturbative contributions to the D3-brane potential, yielding a promising ten-dimensional representation of four-dimensional nonperturbative effects. Our result encompasses all significant contributions to the D3-brane potential discussed in the literature, and does so in the single coherent framework of ten-dimensional supergravity. Moreover, we identify new terms with irrational scaling dimensions that were inaccessible in prior works. By decoupling gravity in a noncompact configuration, then systematically reincorporating compactification effects as ultraviolet perturbations, we have provided an approach in which Planck-suppressed contributions to the D3-brane effective action can be computed.Comment: 70 page

    Dynamical Fine Tuning in Brane Inflation

    Full text link
    We investigate a novel mechanism of dynamical tuning of a flat potential in the open string landscape within the context of warped brane-antibrane inflation in type IIB string theory. Because of competing effects between interactions with the moduli stabilizing D7-branes in the warped throat and anti-D3-branes at the tip, a stack of branes gives rise to a local minimum of the potential, holding the branes high up in the throat. As branes successively tunnel out of the local minimum to the bottom of the throat the potential barrier becomes lower and is eventually replaced by a flat inflection point, around which the remaining branes easily inflate. This dynamical flattening of the inflaton potential reduces the need to fine tune the potential by hand, and also leads to successful inflation for a larger range of inflaton initial conditions, due to trapping in the local minimum.Comment: 23 pages, 9 figures. v2: Updated D3-dependence in potential, small changes to numerical result

    A Phase Transition between Small and Large Field Models of Inflation

    Full text link
    We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large field type to a region where they are of small field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large field region and non-universal behavior at the small field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.Comment: 21 pages, 8 figure

    Anomalous Dimensions and Non-Gaussianity

    Full text link
    We analyze the signatures of inflationary models that are coupled to strongly interacting field theories, a basic class of multifield models also motivated by their role in providing dynamically small scales. Near the squeezed limit of the bispectrum, we find a simple scaling behavior determined by operator dimensions, which are constrained by the appropriate unitarity bounds. Specifically, we analyze two simple and calculable classes of examples: conformal field theories (CFTs), and large-N CFTs deformed by relevant time-dependent double-trace operators. Together these two classes of examples exhibit a wide range of scalings and shapes of the bispectrum, including nearly equilateral, orthogonal and local non-Gaussianity in different regimes. Along the way, we compare and contrast the shape and amplitude with previous results on weakly coupled fields coupled to inflation. This signature provides a precision test for strongly coupled sectors coupled to inflation via irrelevant operators suppressed by a high mass scale up to 1000 times the inflationary Hubble scale.Comment: 40 pages, 10 figure

    Chasing Brane Inflation in String-Theory

    Full text link
    We investigate the embedding of brane anti-brane inflation into a concrete type IIB string theory compactification with all moduli fixed. Specifically, we are considering a D3-brane, whose position represents the inflaton Ï•\phi, in a warped conifold throat in the presence of supersymmetrically embedded D7-branes and an anti D3-brane localized at the tip of the warped conifold cone. After presenting the moduli stabilization analysis for a general D7-brane embedding, we concentrate on two explicit models, the Ouyang and the Kuperstein embeddings. We analyze whether the forces, induced by moduli stabilization and acting on the D3-brane, might cancel by fine-tuning such as to leave us with the original Coulomb attraction of the anti D3-brane as the driving force for inflation. For a large class of D7-brane embeddings we obtain a negative result. Cancelations are possible only for very small intervals of Ï•\phi around an inflection point but not globally. For the most part of its motion the inflaton then feels a steep, non slow-roll potential. We study the inflationary dynamics induced by this potential.Comment: 34 pages, 4 figures. Final version published in JCA

    Brane inflation and the WMAP data: a Bayesian analysis

    Get PDF
    The Wilkinson Microwave Anisotropy Probe (WMAP) constraints on string inspired ''brane inflation'' are investigated. Here, the inflaton field is interpreted as the distance between two branes placed in a flux-enriched background geometry and has a Dirac-Born-Infeld (DBI) kinetic term. Our method relies on an exact numerical integration of the inflationary power spectra coupled to a Markov-Chain Monte-Carlo exploration of the parameter space. This analysis is valid for any perturbative value of the string coupling constant and of the string length, and includes a phenomenological modelling of the reheating era to describe the post-inflationary evolution. It is found that the data favour a scenario where inflation stops by violation of the slow-roll conditions well before brane annihilation, rather than by tachyonic instability. Concerning the background geometry, it is established that log(v) > -10 at 95% confidence level (CL), where "v" is the dimensionless ratio of the five-dimensional sub-manifold at the base of the six-dimensional warped conifold geometry to the volume of the unit five-sphere. The reheating energy scale remains poorly constrained, Treh > 20 GeV at 95% CL, for an extreme equation of state (wreh ~ -1/3) only. Assuming the string length is known, the favoured values of the string coupling and of the Ramond-Ramond total background charge appear to be correlated. Finally, the stochastic regime (without and with volume effects) is studied using a perturbative treatment of the Langevin equation. The validity of such an approximate scheme is discussed and shown to be too limited for a full characterisation of the quantum effects.Comment: 65 pages, 15 figures, uses iopart. Shortened version, updated references. Matches publication up to appendix B kept on the arXi

    On D3-brane Potentials in Compactifications with Fluxes and Wrapped D-branes

    Get PDF
    We study the potential governing D3-brane motion in a warped throat region of a string compactification with internal fluxes and wrapped D-branes. If the Kahler moduli of the compact space are stabilized by nonperturbative effects, a D3-brane experiences a force due to its interaction with D-branes wrapping certain four-cycles. We compute this interaction, as a correction to the warped four-cycle volume, using explicit throat backgrounds in supergravity. This amounts to a closed-string channel computation of the loop corrections to the nonperturbative superpotential that stabilizes the volume. We demonstrate for warped conical spaces that the superpotential correction is given by the embedding equation specifying the wrapped four-cycle, in agreement with the general form proposed by Ganor. Our approach automatically provides a solution to the problem of defining a holomorphic gauge coupling on wrapped D7-branes in a background with D3-branes. Finally, our results have applications to cosmological inflation models in which the inflaton is modeled by a D3-brane moving in a warped throat.Comment: 45 pages, 1 figure; v2: added reference, clarified notatio

    Volume modulus inflection point inflation and the gravitino mass problem

    Full text link
    Several models of inflection point inflation with the volume modulus as the inflaton are investigated. Non-perturbative superpotentials containing two gaugino condensation terms or one such term with threshold corrections are considered. It is shown that the gravitino mass may be much smaller than the Hubble scale during inflation if at least one of the non-perturbative terms has a positive exponent. Higher order corrections to the Kahler potential have to be taken into account in such models. Those corrections are used to stabilize the potential in the axion direction in the vicinity of the inflection point. Models with only negative exponents require uplifting and in consequence have the supersymmetry breaking scale higher than the inflation scale. Fine-tuning of parameters and initial conditions is analyzed in some detail for both types of models. It is found that fine-tuning of parameters in models with heavy gravitino is much stronger than in models with light gravitino. It is shown that recently proposed time dependent potentials can provide a solution to the problem of the initial conditions only in models with heavy gravitino. Such potentials can not be used to relax fine tuning of parameters in any model because this would lead to values of the spectral index well outside the experimental bounds.Comment: 27 pages, 9 figures, comments and references added, version to be publishe
    • …
    corecore