7,734 research outputs found

    A question of time: tissue adaptation to mechanical forces.

    Get PDF
    While much attention has been focused on the force-generating mechanisms responsible for shaping developing embryos, less is known about the ways in which cells in animal tissues respond to mechanical stimuli. Forces will arise within a tissue as the result of processes such as local cell death, growth and division, but they can also be an indirect consequence of morphogenetic movements in neighbouring tissues or be imposed from the outside, for example, by gravity. If not dealt with, the accumulation of stress and the resulting tissue deformation can pose a threat to tissue integrity and structure. Here we follow the time-course of events by which cells and tissues return to their preferred state following a mechanical perturbation. In doing so, we discuss the spectrum of biological and physical mechanisms known to underlie mechanical homeostasis in animal tissues

    Handwritten digit recognition by bio-inspired hierarchical networks

    Full text link
    The human brain processes information showing learning and prediction abilities but the underlying neuronal mechanisms still remain unknown. Recently, many studies prove that neuronal networks are able of both generalizations and associations of sensory inputs. In this paper, following a set of neurophysiological evidences, we propose a learning framework with a strong biological plausibility that mimics prominent functions of cortical circuitries. We developed the Inductive Conceptual Network (ICN), that is a hierarchical bio-inspired network, able to learn invariant patterns by Variable-order Markov Models implemented in its nodes. The outputs of the top-most node of ICN hierarchy, representing the highest input generalization, allow for automatic classification of inputs. We found that the ICN clusterized MNIST images with an error of 5.73% and USPS images with an error of 12.56%

    The inner kiloparsec of the jet in 3C264

    Full text link
    We present new multi-frequency EVN, MERLIN and VLA observations of the radio source 3C264, sensitive to linear scales ranging from the parsec to several kiloparsecs. The observations confirm the existence of regions with different properties in the first kiloparsec of the jet. The most remarkable feature is the transition between a well collimated narrow jet at distances from the core below 80 pc, to a conical-shaped wide jet, with an opening angle of 20 degrees. Another change of properties, consisting of an apparent deflection of the jet ridge line and a diminution of the surface brightness, occurs at a distance of 300 pc from the core, coincident with the radius of a ring observed at optical wavelengths. Our observations add new pieces of information on the spectrum of the radio-optical jet of 3C264, with results consistent with a synchrotron emission mechanism and a spectrum break frequency in the infrared. Brightness profiles taken perpendicularly to the jet of 3C264 are consistent with a spine brightened jet at distances below 100 pc from the core, and an edge-brightened jet beyond, which can be interpreted as evidence of a transverse jet velocity structure. Our observations do not allow us to distinguish between the presence of a face--on dust and gas disk at the center of the host galaxy of 3C264, or rather an evacuated bubble. However, the properties of the jet structure, the changes in the polarization angle, and the plausible jet orientation can be naturally brought into agreement in the bubble scenario.Comment: 10 pages, 9 figures, accepted in A&

    The Emergence of the Modern Universe: Tracing the Cosmic Web

    Full text link
    This is the report of the Ultraviolet-Optical Working Group (UVOWG) commissioned by NASA to study the scientific rationale for new missions in ultraviolet/optical space astronomy approximately ten years from now, when the Hubble Space Telescope (HST) is de-orbited. The UVOWG focused on a scientific theme, The Emergence of the Modern Universe, the period from redshifts z = 3 to 0, occupying over 80% of cosmic time and beginning after the first galaxies, quasars, and stars emerged into their present form. We considered high-throughput UV spectroscopy (10-50x throughput of HST/COS) and wide-field optical imaging (at least 10 arcmin square). The exciting science to be addressed in the post-HST era includes studies of dark matter and baryons, the origin and evolution of the elements, and the major construction phase of galaxies and quasars. Key unanswered questions include: Where is the rest of the unseen universe? What is the interplay of the dark and luminous universe? How did the IGM collapse to form the galaxies and clusters? When were galaxies, clusters, and stellar populations assembled into their current form? What is the history of star formation and chemical evolution? Are massive black holes a natural part of most galaxies? A large-aperture UV/O telescope in space (ST-2010) will provide a major facility in the 21st century for solving these scientific problems. The UVOWG recommends that the first mission be a 4m aperture, SIRTF-class mission that focuses on UV spectroscopy and wide-field imaging. In the coming decade, NASA should investigate the feasibility of an 8m telescope, by 2010, with deployable optics similar to NGST. No high-throughput UV/Optical mission will be possible without significant NASA investments in technology, including UV detectors, gratings, mirrors, and imagers.Comment: Report of UV/O Working Group to NASA, 72 pages, 13 figures, Full document with postscript figures available at http://casa.colorado.edu/~uvconf/UVOWG.htm

    Scale Dependence of Polarized DIS Asymmetries

    Get PDF
    We compare the Q2Q^{2} dependence of the polarized deep inelastic scattering proton asymmetry, driven by the leading order Altarelli Parisi evolution equations, to those arising from fixed order αs\alpha_{s} and αs2\alpha_{s}^{2} approximations. It is shown that the evolution effects associated with gluons, which are not properly taken into account by the leading order approximation, cannot be neglected in the analysis of the most recent experimental data.Comment: Latex file, (9 figures in postcript available from [email protected]
    • …
    corecore