1,241 research outputs found

    Biased-estimations of the Variance and Skewness

    Full text link
    Nonlinear combinations of direct observables are often used to estimate quantities of theoretical interest. Without sufficient caution, this could lead to biased estimations. An example of great interest is the skewness S3S_3 of the galaxy distribution, defined as the ratio of the third moment \xibar_3 and the variance squared \xibar_2^2. Suppose one is given unbiased estimators for \xibar_3 and \xibar_2^2 respectively, taking a ratio of the two does not necessarily result in an unbiased estimator of S3S_3. Exactly such an estimation-bias affects most existing measurements of S3S_3. Furthermore, common estimators for \xibar_3 and \xibar_2 suffer also from this kind of estimation-bias themselves: for \xibar_2, it is equivalent to what is commonly known as the integral constraint. We present a unifying treatment allowing all these estimation-biases to be calculated analytically. They are in general negative, and decrease in significance as the survey volume increases, for a given smoothing scale. We present a re-analysis of some existing measurements of the variance and skewness and show that most of the well-known systematic discrepancies between surveys with similar selection criteria, but different sizes, can be attributed to the volume-dependent estimation-biases. This affects the inference of the galaxy-bias(es) from these surveys. Our methodology can be adapted to measurements of analogous quantities in quasar spectra and weak-lensing maps. We suggest methods to reduce the above estimation-biases, and point out other examples in LSS studies which might suffer from the same type of a nonlinear-estimation-bias.Comment: 28 pages of text, 9 ps figures, submitted to Ap

    Limits on the evolution of galaxies from the statistics of gravitational lenses

    Full text link
    We use gravitational lenses from the Cosmic Lens All-Sky Survey (CLASS) to constrain the evolution of galaxies since redshift z∼1z \sim 1 in the current \LCDM cosmology. This constraint is unique as it is based on a mass-selected lens sample of galaxies. Our method of statistical analysis is the same as in Chae (2003). We parametrise the early-type number density evolution in the form of (1+z)νn(1+z)^{\nu_n} and the velocity dispersion as (1+z)νv(1+z)^{\nu_v}. We find that νn=−0.11−0.89+0.82\nu_n=-0.11^{+0.82}_{-0.89} (1σ1\sigma) if we assume νv=0\nu_v =0, implying that the number density of early-type galaxies is within 50% to 164% of the present-day value at redshift z=1z=1. Allowing the velocity dispersion to evolve, we find that νv=−0.4−0.4+0.5\nu_v=-0.4^{+0.5}_{-0.4} (1σ1\sigma), indicating that the velocity dispersion must be within 57% and 107% of the present-day value at z=1z=1. These results are consistent with the early formation and passive evolution of early-type galaxies. More stringent limits from lensing can be obtained from future large lens surveys and by using very high-redshift quasars (z \ga 5) such as those found from the Sloan Digital Sky Survey.Comment: 10 pages (preprint format), 2 figures, ApJL in press (December 20th issue

    The Angular Power Spectrum of EDSGC Galaxies

    Get PDF
    We determine the angular power spectrum, C_l, of the Edinburgh/Durham Southern Galaxy Catalog (EDSGC) and use this statistic to constrain cosmological parameters. Our methods for determining C_l, and the parameters that affect it are based on those developed for the analysis of cosmic microwave background maps. We expect them to be useful for future surveys. Assuming flat cold dark matter models with a cosmological constant (constrained by COBE/DMR and local cluster abundances), and a scale--independent bias, b, we find good fits to the EDSGC angular power spectrum with 1.11 < b < 2.35 and 0.2 < Omega_m < 0.55 at 95% confidence. These results are not significantly affected by the ``integral constraint'' or extinction by interstellar dust, but may be by our assumption of Gaussianity.Comment: 11 pages, 9 figures, version to appear in Ap

    Large Scale Fluctuations in the X-Ray Background

    Get PDF
    We present an attempt to measure the large angular scale fluctuations in the X-Ray Background (XRB) from the HEAO1-A2 data, expressed in terms of spherical harmonics. We model the harmonic coefficients assuming a power spectrum and an epoch-dependent bias parameter, and using a phenomenological scenario describing the evolution of the X-ray sources. From the few low-order multipoles detected above shot noise, we estimate the power-spectrum normalization on scales intermediate between those explored by local galaxy redshift surveys (~ 100 Mpc) and by the COBE Microwave Background measurements (~ 1000 Mpc). We find that the HEAO1 harmonics are consistent with present epoch rms fluctuations of the X-ray sources bx(0)sigma8 ~ 1-2 in 8 Mpc spheres. Therefore the observed fluctuations in the XRB are roughly as expected from interpolating between the local galaxy surveys and the COBE CMB experiment. We predict that an X-ray all-sky surface brightness survey resolving sources a factor of 10 fainter than HEAO1, may reveal fluctuations to significantly larger angular scales and therefore more strongly constrain the large scale structure of the Universe on scales of hundreds of Mpcs.Comment: 14 pages, 3 Postscript figures, uses aaspp4.sty and psfig. Revised following referee's report. Accepted for publication in Ap
    • …
    corecore