We present an attempt to measure the large angular scale fluctuations in the
X-Ray Background (XRB) from the HEAO1-A2 data, expressed in terms of spherical
harmonics. We model the harmonic coefficients assuming a power spectrum and an
epoch-dependent bias parameter, and using a phenomenological scenario
describing the evolution of the X-ray sources. From the few low-order
multipoles detected above shot noise, we estimate the power-spectrum
normalization on scales intermediate between those explored by local galaxy
redshift surveys (~ 100 Mpc) and by the COBE Microwave Background measurements
(~ 1000 Mpc). We find that the HEAO1 harmonics are consistent with present
epoch rms fluctuations of the X-ray sources bx(0)sigma8 ~ 1-2 in 8 Mpc spheres.
Therefore the observed fluctuations in the XRB are roughly as expected from
interpolating between the local galaxy surveys and the COBE CMB experiment. We
predict that an X-ray all-sky surface brightness survey resolving sources a
factor of 10 fainter than HEAO1, may reveal fluctuations to significantly
larger angular scales and therefore more strongly constrain the large scale
structure of the Universe on scales of hundreds of Mpcs.Comment: 14 pages, 3 Postscript figures, uses aaspp4.sty and psfig. Revised
following referee's report. Accepted for publication in Ap